首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高速铁路路基沉降计算与分析是路基设计及评估的重要环节。为准确计算高速铁路中低压缩性土路基沉降,从中低压缩性土的工程特性出发,基于考虑时间效应的压缩层厚度计算方法和分层连续加载下地基沉降计算理论,建立更适应于高铁路基荷载特征的高铁中低压缩性土路基沉降计算方法。利用吉珲铁路珲春试验工点得到的地基土物理和力学指标,计算路堤分级堆载条件下,不同埋深处上层硬塑粉质黏土和下层全风化泥质粉砂岩地基的时效变形规律。结果表明,在路基填筑过程中,基底附加应力计算方法获取的基底附加应力与实测值较为吻合。进一步对比理论与现场实测结果发现,截至第700天,地基总沉降的计算误差约2 mm;地基分层沉降的理论值与计算值误差在±5%以内,验证了计算方法的可靠性和准确性;针对考虑时间效应的压缩层厚度计算确定的地基压缩层厚度,其随路基填筑高度呈线性正相关。上述方法不仅为合理选择并优化高速铁路中低压缩性土的地基加固措施及方案提供了关键的技术支撑,也为精确计算和预测工后沉降提供了保障。  相似文献   

2.
中低压缩性土在我国广泛分布,是高铁路基主要的承载地层。其承载变形快速稳定的特征对高铁路基变形控制有积极意义,因此,中低压缩性土智能识别对高铁路基设计、施工具有重要意义。针对高速铁路路基勘察设计中中低压缩性土的快速、智能识别问题,通过大量的现场原位试验数据,择优确定了以标贯试验、静力触探、载荷试验等原位测试结果为智能判别指标,建立中低压缩性土模糊推演模式,构建高铁中低压缩性土网络预测模型,形成基于现场原位测试的中低压缩性土快速智能识别方法,并通过不同算法进行网络训练和工程预测。结果表明,网络预测结果与实际测试结果整体上吻合度均较高,共轭梯度法相对梯度下降法计算效率明显提高,实现了中低压缩性土原位快速识别与测定,为高铁中低压缩性土路基设计、施工、评估等环节提供了重要依据。  相似文献   

3.
中低压缩性土是高铁路基的主要承载地层,对其性能的认知水平和处理技术直接决定了高铁路基沉降控制效果和建造成本。对中低压缩性土近十多年研究成果进行系统总结的基础上,首先,介绍高铁中低压缩性土路基工后沉降控制技术管理体系及其各重要组成部分;然后,分别详细论述了中低压缩性土变形特性与分类标准、毫米级工后沉降计算方法以及地基处理等核心技术;最后,通过工程实例从土性分类、工后沉降计算、地基处理措施以及监测反馈、评估等各环节,展示高铁中低压缩性土路基工后沉降控制技术管理体系在工程实践中的应用。结果表明,高铁中低压缩性土路基工后沉降控制与技术管理体系可以实现中低压缩性土判别分类、高精度沉降计算、经济适宜的地基处理、变形监控反馈的有效衔接,从管理角度实现建设、勘察、设计、施工、监测、评估各个单位的协同工作,达到动态闭环控制,确保高铁中低压缩性土路基满足“毫米级”工后沉降要求。  相似文献   

4.
为优化和完善高速铁路中低压缩性土地基沉降控制技术,通过对大量的高速铁路路基勘察及土工试验资料的综合分析,研究中低压缩性土的基本工程特性;采用三轴试验、压缩试验、单元结构模型试验等土工试验方法,对中低压缩性土的变形状态及其随所受应力水平、时间变化的特性进行比较系统的研究,给出中低压缩性土的4种变形状态与其所受应力水平(荷载比)的关系;研究提出具有变形时间效应的地基压缩层厚度确定方法,并通过对比研究得出:高速铁路中低压缩性土地基的压缩层厚度,可采用0. 2倍应力比值法确定。  相似文献   

5.
中等压缩性土在我国分布极为广泛,是我国高速铁路路基的主要承载地层。面对毫米级工后沉降控制要求,研究中等压缩性土地基处理方式对高铁路基设计与建设具有重要意义。通过现场试验,分析了不同地基处理方式下高铁中等压缩性土地基沉降变形规律。研究结果表明,中等压缩性土地基沉降实测推算值明显小于理论计算值,为计算值的0.6~0.8倍;路基填筑完成时,中等压缩性土层沉降完成比例约为50%,预压9个月后,完成比例为90%~95%,若能保证1年以上的预压期,可不考虑其对工后沉降的影响;砂桩加固可加快填筑期间的沉降完成比例,但由于该层土沉降完成较快,不处理、部分处理、全部处理在预压9个月后三者沉降无明显差别。本文研究成果可指导高速铁路地基处理方案选择。  相似文献   

6.
控制高速铁路工后沉降是保证高速列车安全运营的关键。为解决目前路基工后沉降计算不准确的问题,从3个方面入手,建立适宜于高铁中低压缩性土路基工后沉降的计算方法。首先,利用基于变形时间效应的压缩层厚确定方法,提高了中低压缩性土压缩层厚度的计算精度;其次,基于众多高铁中低压缩性土路基实测数据,提出适应于高铁路基柔性荷载的中低压缩性土路基总沉降修正系数ψs,以及施工期沉降完成比例η。在此基础上,通过对比3个不同实际工点的工后沉降实测数据和计算结果表明,针对中低压缩性土路基工后沉降计算方法更符合工程实际,可为高铁中低压缩性土地基处理及路基铺轨提供依据。  相似文献   

7.
针对京沪高速铁路中等压缩性土的基本特性,以及路基设计中广泛采用CFG桩复合地基的处理措施,进行了CFG桩处理中等压缩性土地基的现场试验.对中等压缩性土基本特性、CFG桩施工工艺及质量检测、CFG桩复合地基和桩筏基础沉降变形特性、荷载分担规律等进行了研究.试验表明CFG桩复合地基可满足高速铁路工后沉降和差异沉降的控制要求,得出了京沪高速铁路中等压缩性土地基工程特性、CFG桩施工工艺及质量检验方法以及CFG桩复合地基和桩筏基础的设计原则.  相似文献   

8.
为研究中高压缩性土地基的沉降特性,依托哈佳铁路设置了沉降观测试验段,通过理论分析、室内试验和现场监测等手段,得到了不同地基处理方案下中高压缩性土地基在填筑期和静置期的沉降发展规律。结果表明:路基填筑完成时,沉降完成比例约为45%~55%,经过6个月的静置期后,沉降完成比例可达到75%~85%;实测沉降远小于理论计算沉降值,对压缩模量当量值在6.0~7.0 MPa之间的中高压缩性土地基,反演分析得到的沉降计算修正系数为0.3~0.35;CFG桩浅层加固可有效控制地基沉降,应结合铁路等级、路堤高度等因素确定经济合理的桩长。  相似文献   

9.
研究目的:河流高阶地冲积成因中等压缩性黏土是京沪高速铁路广泛分布的一种地基土,具有较高的天然地基强度,通常不存在填土稳定性问题,天然条件或经浅层处理即可满足沉降控制不十分严格工程的要求.而高速铁路无砟轨道对路基工后沉降有严格的控制要求,对该类土的总沉降和工后沉降分析采用常规的理论计算方法其计算精度无法满足设计的要求.本文通过京沪高速铁路地基土基本特性分析和天然地基的现场填筑试验,研究该类土的沉降分析方法.研究结论:总结了河流高阶地中等压缩性黏土的基本特性,特别是强结构性和高屈服强度的特性;分析了该类地基土在低荷载水平作用下的变形规律;提出了总沉降采用“弹性理论法”,以及工后沉降采用基于弹性理论的“沉降完成比例”的计算方法,通常荷载稳定放置6个月后,沉降完成比例可达90%以上.  相似文献   

10.
研究目的:我国西南、西北、中南及东南等地区广泛分布红层泥岩,开展红层泥岩填筑高速铁路路基技术的研究,提出系统的红层泥岩填料使用方法与工程技术,对我国铁路建设具有重要意义.研究结论:通过室内土工试验、现场路基填筑试验、路基离心模型试验与现场原型路基沉降观测、现场原型路基循环加载试验等方法,系统研究了红层泥岩土填料工程特性、红层泥岩路基压密沉降、累积变形特性等关键技术问题.在此基础上提出了利用红层泥岩填筑高速铁路路基工程技术,主要包括红层泥岩填料制备标准、红层泥岩路基填筑压实标准、红层泥岩路基结构及设计参数、红层泥岩填筑施工工艺及要点等内容.工程实践表明,所提出的红层泥岩填筑高速铁路路基技术是合理、可行的.  相似文献   

11.
为研究高速铁路粗粒土路基沉降特性,采用单点沉降计对无砟轨道路基实尺模型的沉降进行长期观测,结果表明,粗粒土填方路基的沉降主要由填筑引起的瞬时压缩、粗粒土引起的流变以及外荷载引起的变形等组成,其中路基填筑产生的变形占50%左右,粗粒土流变产生的变形占40%左右;路基填筑完后,由粗粒土流变产生的变形占填筑后总沉降的比例可达80%,路基的最终沉降主要由粗粒土流变变形组成。根据粗粒土路基的沉降特性,采用开尔文流变模型构建了相应沉降预测函数。研究表明:基于开尔文模型的沉降预测结果与实测数据吻合较好,为高速铁路粗粒土路基的沉降预测问题提供参考。  相似文献   

12.
兰新铁路第2双线新疆段气候条件严酷,现有的人工水准测量的沉降观测方式难以满足规范所要求的频率和频次。中铁西北院研发了CDI-400组合式沉降仪,并选择有代表性的试验工点对路基沉降变形特征进行评估。CDI-400组合式沉降仪绝对误差在±0.2 mm以内,对高铁路基沉降的观测可以满足相关技术要求;试验工点地基沉降量均值为10.38 mm,其中路基填筑阶段发生了6.0 mm,路基填筑完成后发生了4.38 mm,地基沉降主要发生在路基填筑阶段;路基本体的压缩沉降量非常小,均值为1.14 mm,路基总沉降主要体现为地基的沉降,戈壁土地区采用冲击碾压的地基处理方式可以达到客运专线对路基沉降控制的要求;戈壁土的地基沉降主要发生在瞬时沉降阶段,表现为剪切沉降变形。  相似文献   

13.
高速铁路尤其是无砟轨道对路基工后沉降要求十分严格,邻近既有高速铁路进行工程建设活动(如开挖、填筑及地基处理)会对既有高铁产生新的沉降变形。如何避免这些影响,值得进行深入研究,并提出相应的工程措施。目前,并行既有高铁新建路基一般采用填筑轻质土+桩板(筏)复合地基处理等措施。新建郑济客专并行既有京广客专新乡东站时,根据具体情况,结合有限元计算,考虑施工干扰及投资等因素,研究提出具有一定创新性的"加筋陡坡+桩筏结构"和"框架结构"方案,可供类似工程借鉴。  相似文献   

14.
郑西、西宝和大西高速铁路是我国在湿陷性黄土地区先后修建的无砟轨道高速铁路,黄土地基湿陷沉降是影响铁路安全的关键因素。结合这3条高铁路基工程,开展了物理力学试验、应力测试、桩身材料试验、现场浸水试验和沉降观测,对黄土路基地基的湿陷变形量、沉降计算影响深度、沉降计算经验修正系数、压缩模量扩大系数等进行了分析,并对适用于高速铁路的湿陷性黄土地基处理方法进行了总结,可为湿陷性黄土地区高速铁路路基地基沉降控制提供参考。  相似文献   

15.
京沪高速铁路CFG桩-筏复合地基现场试验研究   总被引:2,自引:0,他引:2  
结合京沪高速铁路凤阳试验段工程,开展CFG桩+垫层+筏板处理地基试验。实测桩-筏复合地基沉降变形、桩顶应力、桩间土应力、筏板顶面土应力、钢筋应力及桩身应变;分析路基沉降变形、桩土应力比随填筑高度和固结时间的变化规律;获得地基面桩土应力分布、筏板顶面土应力分布、钢筋应力分布、桩身轴力和侧摩阻力分布;研究路堤荷载作用下CFG桩-筏复合地基的工作性状。研究成果有助于高速铁路桩-筏复合地基沉降控制、承载特性和应力传递机理的研究,并为京沪高速铁路及其它相关工程的桩-筏复合地基设计方法提供数据支持。  相似文献   

16.
为准确掌握中等压缩性土地基在路堤荷载下的沉降变形规律,应用TLJ-2型土工离心试验机模拟强夯加固地基,研究高速铁路中等压缩性土地基的附加应力和分层沉降特征。通过与现场填筑试验对比,分析离心模型试验预测原型地基分层沉降的精度,提出沉降修正系数取值范围,为今后中等压缩性土地基加固技术优化提供借鉴。结果表明:路基基底中心应力比路肩下大,符合柔性基底应力分布形式;附加应力随地基深度增加而减小,强夯影响深度内附加应力衰减较快,而影响范围以下衰减减缓;铺轨运营550d后,地基工后沉降逐渐趋于稳定,工后沉降值远小于施工阶段地基的总沉降;离心模型试验预测地基单位分层压缩量的精度较高,而对于不同施工阶段离心模型试验预测地基沉降的精度存在差异,沉降修正系数的引入能够较为真实地反映现场地基沉降特性。  相似文献   

17.
在重复的列车荷载作用下,路基要产生不可恢复的累计下沉,最终影响轨道结构的平顺性,所以承载特性和变形问题便成为高速铁路路基设计与施工的控制因素,对路基填料以及压实质量也有了更高的标准,研究满足强风、大温差戈壁土风沙地区高速铁路路基技术参数要求的路基填筑施工工艺标准,包括填料的选择、控制、压实工艺及质量检验方法等,提出有关指导建议。  相似文献   

18.
高速铁路路基红层泥岩填料力学特性试验研究   总被引:2,自引:0,他引:2  
研究目的:本文主要研究红层泥岩的击实性质、CBR承载比、模拟路基荷载下的膨胀率、无侧限强度、三轴剪切强度及压缩模量,用以验证将红层泥岩用作高速铁路路基及基床填料的适应性.研究结果:得出了红层泥岩的最大干密度、最优含水量、浸水前后的强度及变形特性、CBR承载特性与膨胀特性等物理力学特性;结合达成新线试验段的试验研究及施工,分析了高路堤浸水前后的变形特性,提出了在实际工程中使用红层泥岩填料填筑路基的意见和建议.  相似文献   

19.
为研究高速铁路路基填筑过程中膨润土地基的变形特性,针对潍莱铁路试验段进行了填筑期内的现场监测,监测膨润土地基分层沉降、路基本体土工格栅的柔性变形以及膨润土地基中的孔隙水压力。根据现场监测数据,分析了膨润土地基变形特性。研究表明:路基填筑过程中,在地基加固区范围内的膨润土产生了均匀的分层沉降,当上覆荷载达到一定值后,沉降逐渐收敛;由于膨润土地基的特殊性质,坡脚处与路基中心处沉降略有不同;土工格栅柔性变形自路基中心向两侧逐渐衰减,且随着填筑高度的增加而增大;孔隙水压力与地基沉降呈现出相关性,膨润土地基沉降过程为排水固结,孔隙水压力的收敛意味着地基沉降趋于稳定。  相似文献   

20.
田月峰 《铁道建筑》2022,(3):145-148
以新建鲁南高速铁路近接既有京沪高速铁路工程为依托,分析了此类近接工程路基变形成因及控制难点,提出了以少扰动桩基加固+减载填筑施工+路基变形动态监控为核心的变形控制关键技术体系.结果表明:近接既有高速铁路过程中同时考虑少扰动地基处理、填筑泡沫混凝土减轻附加应力与变形,控制既有高速铁路路基变形不超限,并通过开展路基变形高精...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号