首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
跟驰过程中跟驰车速、跟车间距的波动性表征了驾驶员跟驰行为平稳性.利用8自由度高逼真驾驶模拟器,通过开启关闭运动系统构建动静态模拟器,分析运动系统对不同跟驰状态下驾驶员跟驰行为平稳性的影响.动态模拟器相对于静态模拟器对比结果表明:加速跟驰状态下,跟驰车速、跟车间距平稳性分别提高了12.5%和27.4%;减速跟驰状态下,跟驰车速、跟车间距平稳性分别提高了27.4%和22.9%;稳定跟驰状态下,在跟驰车速为10 km/h、40 km/h和80 km/h时,跟驰车速平稳性分别提高了30.7%、22.2%和17.6%,跟车间距平稳性分别提高了23.6%、37.9%和17.0%.显著性检验结果表明:在跟驰车速为40 km/h的稳定跟驰状态下,跟驰车速和跟车间距在动静态模拟下的平稳性存在显著差异;加速跟驰状态下,动静态模拟器下驾驶员跟车间距平稳性存在显著性差异;减速跟驰状态下,动静态模拟器下驾驶员跟驰车速平稳性存在显著性差异.研究成果为开展驾驶模拟实验的动静态模拟器的选择提供了参考.  相似文献   

2.
为了提高道路交通安全主动防控能力, 以小汽车行驶轨迹数据为研究对象, 研究了不良驾驶行为的实时辨识问题; 基于无人机拍摄交通流视频提取海量车辆行驶轨迹数据; 提出了应用风险度量方法量化典型不良驾驶行为的理论; 使用大样本统计分布方法确定不良驾驶行为的特征参数阈值; 建立了结合交通环境信息的不良驾驶行为谱, 计算了不良驾驶行为谱特征值; 以车辆不良驾驶行为谱特征值为依据标定不良车辆样本; 以部分驾驶行为谱参数为输入, 使用不平衡类提升的人工智能算法建立了不良驾驶行为辨识模型; 为了验证方法的有效性, 使用无人机交通视频采集了上海市的车辆行驶轨迹数据, 分析了小汽车不良跟驰行为特征。分析结果表明: 使用四分位差法得到不良跟驰特征参数的阈值为0.19 s-1, 大部分样本处于正常跟驰状态, 约2%样本处于不良跟驰状态; 基于每辆车行驶轨迹中正常跟驰状态和不良跟驰状态的比例, 使用95%分位数将8 917 veh小汽车样本划分为不良跟驰车辆445 veh与正常跟驰车辆8 472 veh; 不平衡类提升算法CUSBoost辨识不良跟驰车辆达到了94.4%的召回率和85.9%的精确率, 平衡分数和精确率-召回率曲线下的面积为所有算法中最高。可见, 不良驾驶行为谱作为一种客观的不良驾驶行为量化表达方法, 与人工智能方法结合可以生成海量的不良驾驶行为谱库; 不平衡类提升算法可以解决不良驾驶行为数据的不平衡问题, 与常规算法相比具有更好的不良驾驶行为辨识能力。   相似文献   

3.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

4.
车辆跟驰模拟中的驾驶行为与模糊逻辑控制   总被引:8,自引:0,他引:8  
分析了车辆驾驶员信息处理过程及性格特征,在描述了基于驾驶员速度、距离判断跟车模式的基础上,应用模糊数学方法,建立了车辆跟驰驾驶行为的模糊逻辑控制模型。  相似文献   

5.
随着中国新基建战略的提出及自动驾驶和网联通信技术的不断发展,智能网联车辆(Connected and Automated Vehicle,CAV)、自动驾驶车辆(Autonomous Vehicle,AV)和人工驾驶车辆(Human-driven Vehicle,HDV)混行的状态将在未来一段时间内存在。在混行条件下,车辆间的交互影响模式将发生变化。本文以HDV跟驰AV的驾驶行为为研究对象,通过分析驾驶实验数据将跟驰AV时HDV的驾驶风格量化并分为迟疑型、平稳型和信赖型三类。同时考虑驾驶风格、车辆的转弯能力和转弯半径等参数改进智能驾驶人模型(Intelligent Driver Model,IDM),建立了前车为AV时的HDV跟驰模型。该模型通过对三类不同风格HDV跟驰AV时的驾驶参数的标定,能根据不同跟驰风格采取相应的跟驰策略。经数据拟合检验,该模型在启动加速、匀速行驶和制动减速阶段均能以较高精度拟合实际驾驶数据,其中直行跟驰的平均拟合精度为96.2%,转弯跟驰的平均拟合精度为91.4%。可见,本文提出的模型可以刻画HDV跟驰AV时的行为特征。在目前难以进行大规模混流实车实验的情况下...  相似文献   

6.
自动驾驶车辆可以通过数据驱动模型较好地学习人类驾驶员的跟驰行为,但单纯的学习并不能发挥自动驾驶车辆反应更敏捷的特性.文中利用NGSIM数据集开发一种基于零反应时间数据的跟驰行为学习模型.首先,基于人类驾驶行为数据建立反应时间预测的神经网络模型,预测每条人类跟驰轨迹数据每个时间步的反应时间,并在原轨迹中剪除反应时间内的数据,进而重构样本数据,获得近似于零反应时间、更符合自动驾驶车辆特性的样本集.在此基础上采用LSTM架构,建立基于新学习样本的跟驰行为模型(LSTM-0RT).仿真对比发现:LSTM-0RT跟驰模型比传统LSTM模型提前50 s收敛,且速度变化趋势与前车基本一致,充分体现反应速度快的特点;在混驶环境测试中,采用LSTM-0RT模型的自动驾驶车辆比例越大,跟驰车队的渐进稳定性越高,车流波动的影响范围越小;交通流特性分析显示LSTM-0RT模型在不同交通流密度下的适用性明显优于LSTM模型;车头时距指标测算也表明LSTM-0RT模型具有更高的跟驰安全性.  相似文献   

7.
为提高危险跟驰行为研究的效率和可靠度,创新研究基于智能驾驶员模型(IDM)模型参数的危险跟驰行为定义方法。首先,以NGSIM自然车辆数据集为基础提取跟驰轨迹数据,并通过遗传算法标定IDM模型参数,挖掘驾驶员跟驰行为特征;其次,在分析跟驰行为特征指标分布规律的基础上,考虑指标间的相关性,确定各等级危险跟驰行为指标阈值;最后,设计车辆跟驰的仿真试验,选择6个指标对不同级别危险场景下的交通运行仿真结果进行评价。结果表明,危险驾驶员跟车间距更小,间距波动系数较大,并且会干扰交通整体运行。  相似文献   

8.
为了量化描述不同道路驾驶场景下驾驶行为的动态变化过程与不良驾驶程度, 研究了不良驾驶行为谱的构建与分析方法; 基于车辆行驶轨迹关键参数建立驾驶行为谱; 应用风险度量方法量化4种不良驾驶行为, 包括不良跟驰、蛇形驾驶、速度不稳与不良换道; 基于驾驶行为谱建立了不良驾驶行为谱; 基于交通流量-密度关系与驾驶行为统计参数的差异对交通流状态进行划分; 在不同交通流状态下, 使用四分位差法确定了不良驾驶行为特征参数阈值; 基于特征参数阈值计算每个驾驶人的不良驾驶行为得分; 使用CRITIC赋权法确定了不良驾驶行为的权重, 为每个驾驶人计算不良驾驶行为谱特征值; 为了验证方法的有效性, 使用无人机交通视频采集了上海市的车辆行驶轨迹数据, 分析了小汽车不良驾驶行为特征; 通过专家打分的方法对不良驾驶行为谱特征值进行验证。分析结果表明: 基于驾驶行为参数的交通流状态聚类方法将数据中的交通流状态分为自由流、饱和流、拥堵流3类; 聚类方法比基于基本图的交通流状态划分方法更适合驾驶行为分析; 不同交通流状态下的不良跟驰、蛇形驾驶、速度不稳特征参数分布明显不同, 拥堵流状态下的不良跟驰、蛇形驾驶、速度不稳极端值出现更频繁, 而不良换道特征参数在各交通流状态下有相似的分布; 蛇形驾驶、速度不稳、不良换道的特征参数阈值随交通流密度上升而上升; 使用CRITIC赋权法计算的不良跟驰、蛇形驾驶、速度不稳、不良换道的权重分别为0.19、0.33、0.37、0.11;自由流、饱和流、拥堵流的不良驾驶行为谱特征值的分布范围相近, 均处于0与0.4之间; 专家的不良驾驶行为评价与不良驾驶行为谱特征值一致。可见, 不良驾驶行为谱的构建与特征值计算方法能够使用车辆行驶轨迹数据自动辨识不良驾驶人, 具有客观性、适应性以及可靠性, 能及时发现不良驾驶人, 给驾驶人提供安全提示, 为交通管理部门提供交通安全预警的技术支持。   相似文献   

9.
为满足智能车辆的个性化需求,提高智能车辆人-机交互协同的满意度和接受度,构筑双层驾驶人跟驰模型框架,提出自适应驾驶人期望跟车间距和行为习惯的个性化驾驶人跟驰模型。首先,提取个体驾驶人跟驰均衡状态的数据,采用高斯混合和概率密度函数(Gaussian Mixture Model and Probability Density Function, GMM-PDF)建立第 1 层模型,即驾驶人期望跟车距离模型。然后,将期望跟车距离参数引入模型,基于高斯混合-隐马尔可夫方法(Gaussian Mixture Model and Hidden Markov Model, GMM-HMM)学习驾驶习性,建立第2层模型预测加速度,即个性化驾驶人跟驰模型。其次,研究不同高斯分量个数对模型效果的影响,对比双层模型与 Gipps 模型、最优间距模型(Optimal Distance Model, ODM)、单层模型及通用模型的性能。最后,8位被试驾驶人的自然驾驶行为数据验证结果表明:高斯分量数量与模型性能存在一定的正相关性;在最优高斯分量数量下,8位被试驾驶人在训练集上预测误差均值为0.101 m·s-2,在测试 集上为0.123 m·s-2;随机选取其中1位驾驶人的2个跟车片段数据进行模型计算,结果显示,加速度的平均误差绝对值分别为0.087 m·s-2和0.096 m·s-2,预测效果优于Gipps模型、ODM模型、单层 模型及通用模型30%以上,与驾驶人实际跟驰行为的吻合度更高。  相似文献   

10.
为探究高速工况稳定跟车状态下不同类型驾驶人的跟车特性及驾驶风格识别方法,选取20名驾驶人开展实车驾驶试验,采集自然驾驶状态下的自车速度、跟车间距、跟车时距等指标,基于雷达数据等确定稳定跟车事件提取规则。通过耦合分析稳定跟车状态下的驾驶行为指标分布规律及跟车特性,选取跟车间距、跟车时距及加速踏板开度为聚类指标,使用K均值聚类算法对301段稳定跟车事件进行聚类分析,并根据不同风格类型出现的频数及所占比例将驾驶人划分为3种风格类型(保守型、一般型、激进型)。最后通过CART决策树方法对聚类结果进行验证,进一步分析长时间稳定跟车状态下驾驶风格的迁移特性。研究结果表明:随自车速度增大,跟车间距与加速踏板开度亦呈现增大趋势,且在不同速度区间下均具有显著性差异。不同速度区间下的跟车时距均值无明显变化,稳定分布于2.57~2.72 s。CART决策树验证驾驶风格聚类划分结果总体吻合率达99.7%。不同风格驾驶人的车速与油门踏板开度、跟车间距与跟车时距均存在显著性差异。随时间推移,保守驾驶人更加趋于保守,激进驾驶人更加趋于激进,一般驾驶人则相对较为稳定。研究结果可为高级别自动驾驶系统跟车控制策略及参数的...  相似文献   

11.
从车辆行驶轨迹的角度,车辆驾驶行为可细分为车辆跟驰行为、车辆换道准备行为和车辆换道执行行为,它们对交通拥堵、交通事故等都有着重要影响,也是自动驾驶、交通仿真等系统的基础构成模块.然而,如何从实际微观交通流数据中对3种行为进行识别是驾驶行为研究的基础和难点.本文提出基于支持向量机的驾驶行为识别方法,使用真实车辆轨迹数据,为提高模型的准确率,首先对样本数据进行归一化和主成分分析预处理,然后采用网格搜索算法对惩罚因子和核参数进行寻优,最后利用样本数据对基于支持向量机的分类模型进行训练和测试.结果表明,模型的测试精度达到了98.41%,能够很好地识别车辆的行驶状态,为驾驶行为各阶段的研究提供支持.  相似文献   

12.
准确识别车辆当前驾驶行为模式是自动驾驶领域亟待解决的技术问题。为实现驾驶行为模式精准解析,提高模型识别精度和可靠性,通过开展自然驾驶试验,采集高速工况下20名驾驶人的驾驶行为数据及视觉特性数据等多源参数信息,分析4类典型驾驶行为模式(自由行驶、跟车、左换道、右换道)运行规律及多源参数耦合特性。基于主成分分析法确定4类驾驶行为模式表征指标集,使用支持向量机、随机森林决策树算法建立驾驶行为模式识别模型,通过学习训练,分析比较模型识别结果,对识别效果较好的模型进一步优化,分析优化模型对4类驾驶行为模式识别精度的时序性变化特征。研究结果表明:支持向量机模型、随机森林决策树模型、基于多层感知器神经网络的随机森林优化模型总体识别精度分别为89.4%、90.5%、91.9%;4类驾驶行为模式的AUC (area under the curve)值均高于0.93,可较好地识别车辆当前驾驶行为模式。此外,随机森林优化模型对4类驾驶行为模式的识别精度均随时间推移,呈现先增长后趋于稳定的变化态势,且同一时刻的自由行驶及跟车模式识别精度高于向左及向右换道模式。研究结果可为高级别自动驾驶系统决策及控制策略的制定...  相似文献   

13.
为了研究利用驾驶模拟舱研究驾驶行为的效果,考虑道路几何线形、交通设施、环境条件、交通条件等因素,以北京四环道路环境为例搭建模拟场景,在该模拟环境和相应真实道路环境下进行车辆跟驰实验,提取并对比了加减速跟车状态下的反应时间和车头间距数据,从虚拟环境深度线索和仿真车辆行为特性两方面分析了实验结果.研究结果表明,在加速和减速跟驰状态, 在仿真环境中的驾驶人反应时间均略大于真实道路环境,但差别不显著;仿真环境下的车头间距显著大于真实环境;采用驾驶模拟舱研究驾驶行为时,需修正与距离相关的参数才能得到与实际道路环境相符的结果,修正系数的取值范围为1.5~2.0.   相似文献   

14.
为解决未来自动驾驶专用车道的规划设计问题,本文提出了一种自动驾驶车与人工驾驶车混合交通流路段阻抗函数模型.首先,分析了自动驾驶专用车道的设置对混合交通流中车辆跟驰模式的影响;其次,在此基础上,引入微观跟驰驾驶模型,推导了不同自动驾驶车辆渗透率条件下的路段通行能力函数,分析了自动驾驶车辆对路段通行能力的影响;然后,将混合交通流通行能力引入经典的BPR函数,推导了考虑自动驾驶的混合交通流路段阻抗函数模型;最后,设计了数值实验讨论了自由流速度(自由流行程时间)、自动驾驶车辆的渗透率和安全车头时距对路段阻抗的影响.结果 表明:(1)当路段流量较小时,自动驾驶车辆的引入对路段阻抗行程时间的影响较小;(2)当自动驾驶车的渗透率为30%时,设置自动驾驶专用车道对行程时间的改善最为明显;(3)当流量较小时,自动驾驶车辆渗透率对路段阻抗行程时间的影响较小,而随着路段流量的增大,自由流速度和自动驾驶车辆渗透率将共同决定路段的行程时间.相关成果可为未来自动驾驶专用车道的规划与设计提供理论支撑.  相似文献   

15.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。   相似文献   

16.
为准确模拟驾驶人跟车行为,提出基于隐马尔可夫模型(Hidden Markov Model,HMM)的驾驶人“感知-决策-操控”行为模型。建立描述驾驶意愿的HMM模型,模拟驾驶人感知过程,获得期望的车间距;预测模块模拟驾驶人根据交通环境和自身生理、心理状态预测车辆未来轨迹,即决策过程;优化模块描述驾驶人为使预测的车辆轨迹跟踪上期望的车辆间距而采取的操控汽车的执行动作,即操控过程。上述3个模块的滚动过程实现了对驾驶人跟车行为的模拟。利用自然驾驶数据进行算例分析,结果表明,本文模型预测车间距平均误差仅为1.47%,证明了所建模型的有效性及准确性。本文为驾驶行为建模方法的理论研究和应用拓宽了思路。  相似文献   

17.
为研究城市快速路合流区车辆运行规律,基于车辆自然轨迹数据,提出考虑驾驶行为异质性的合流区元胞自动机仿真模型。模型将合流区分为上游区域、合流区域及下游区域,3个区域由11条路段组成。首先,利用Kalman滤波算法对自然轨迹数据进行降噪处理;然后,计算每辆车驾驶行为特征参数并进行K-means聚类分析,结合聚类效果评价指标Silhouette系数将驾驶行为分为:保守-谨慎型、激进-谨慎型、保守-轻率型及激进-轻率型这4种类型;最后,依据分类结果, 建立考虑加速度、随机慢化概率异质性的跟驰模型和考虑换道安全间距、换道决策的多级异质性换道模型。在各空间占有率的情境下,基于Matlab进行数值仿真,统计同质驾驶行为和异质驾驶 行为条件下,合流区域车道的流量、密度、速度、时空位置及换道频率等参数。仿真结果表明:在空间占有率为10%~20%时,同质交通流相比异质交通流更容易产生局部交通拥堵和交通流失效情境,并且同质交通流量峰值比异质交通量小27.1%;随着空间占有率的增加,同质车辆和异质车辆驾驶频率均呈现增加-稳定-下降的趋势,而异质驾驶行为换道频率的极大值比同质交通流高 20.74%。  相似文献   

18.
驾驶员行为特性对交通仿真模型的影响及其应用   总被引:1,自引:1,他引:1  
针对现行交通仿真模型中跟车模型和超车模型的不足之处,通过分析驾驶员交通行为的基本特性。指出了驾驶员特性对车辆跟驰行为、换车道行为的影响,提出了判断车辆跟驰状态的合理指标及指标值的确定方法,最后分析了驾驶员类型对换车道模型的修正方法。  相似文献   

19.
梳理了近70年关于跟驰模型的研究, 根据建模方法将其分为理论驱动与数据驱动2类模型, 并归纳了跟驰模型的研究热点; 从人类因素、基础设施、交通信息、异质交通流、新建模型理论5个方面对理论驱动类跟驰模型的研究进行了综述; 根据所用机器学习算法的不同, 从模糊逻辑、人工神经网络、实例学习、支持向量回归、深度学习5个方面对数据驱动类跟驰模型的研究进行了综述。分析结果表明: 理论驱动类跟驰模型以理论推演交通现象, 对影响因素的考量难以全面, 部分人类因素难以量化, 驾驶人决策制定过程的解释不够准确, 异质交通流的跟驰模型缺乏一般交通条件下有效性的理论基础和形式化证明; 数据驱动类跟驰模型以交通现象归纳交通规律, 由于数据的来源、评价指标及评价方法不同, 导致应用机器学习算法得到的模型无法系统比较; 数据驱动类模型侧重于从微观角度研究驾驶行为特性, 对复杂交通现象(如交通震荡、迟滞等)的解释性不强; 跟驰模型的研究应创新数据采集方法, 捕捉驾驶人的心理倾向、感知特性和认知能力, 并量化人类因素的影响和充分利用大数据; 数据驱动类跟驰模型应为无人驾驶技术发展提供技术支持; 在自动驾驶完全普及之前, 人工驾驶与自动驾驶混合场景下的驾驶人跟驰行为特性尚待深入研究。   相似文献   

20.
随着轨迹收集技术与数据分析技术的迅速发展,越来越多的车辆行驶轨迹被采集并用于 交通流研究。车辆轨迹数据主要包括车辆运行的位置与时间等信息,利用这些信息可以推算出 车辆的速度、加速度及其与前车之间的空间和时间距离等驾驶行为参量。通过研究轨迹数据可 以揭示车辆自身的运行规律,车辆之间的相互作用规律,道路环境对车辆的作用规律,以及由此 产生的宏观、微观交通流现象,因此,轨迹数据研究受到日益重视。本文简要回顾了与轨迹数据 收集相关的历史,介绍了自然场景下采集的Next Generation SIMulation(NGSIM)数据及实验场景 下采集的车队轨迹数据,并梳理了近几年基于车辆跟驰轨迹的理论研究。首先,分析以交通振 荡、交通回滞为代表的交通流关键实测现象研究工作;整理跟驰行为分析方面的研究成果,包括 不对称跟驰行为、稳定跟驰行为的存在性、跟驰行为的记忆效应、任务难度、随机性、异质性。之 后,介绍基于跟驰行为分析成果而构建的仿真模型。最后,从3个方面评述现有基于轨迹数据的 研究,并提出未来展望:交通流关键实测现象方面,应收集更多不同条件下的数据,并尝试构建更 加普适性的理论或模型解释交通流现象;跟驰行为分析方面,可结合数据挖掘技术或生理、心理 理论,量化驾驶员跟驰特性与生理、心理特征,并将两者结合深入分析跟驰行为的机理;仿真建模 方面,可更多考虑驾驶员生理和心理变量,使模型更具人性化特征,并关注模型的评价方法,注重 模型对实际交通流的解释能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号