首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
横风对高速列车运行安全性影响十分显著,轨道不平顺影响着列车轨道相互作用关系。目前已有研究尚未充分考虑到中国高速铁路无砟轨道线路状态的变化与横风作用下高速列车安全性问题的影响。为了研究这两者的变化耦合而造成的列车安全性影响,采用计算流体力学软件和有限元软件联合仿真,建立横风-高速列车-轨道耦合动力分析模型,输入5种典型的高速铁路无砟轨道不平顺百分数谱,计算分析不同列车运行速度和风速条件下列车运行的安全性指标。结果表明,对应于25%百分位数谱,列车脱轨系数和轮重减载率最低,接下来依次是50%百分位数谱、平均谱、70%百分位数谱和90%百分位数谱。其中在列车运行速度为300 km/h下,横风速度为25 m/s时,70%百分位数谱和90%百分位数谱对应的安全性系数超出安全限值,列车可能发生脱轨。因此在设计和检算强横风作用下高速列车运行安全性指标时,宜采用中国高速铁路无砟轨道70%百分位数谱和90%百分位数谱。  相似文献   

2.
西部风沙地区强风沙流对高速列车运行带来巨大安全隐患。高速列车的行驶线路一般分为平直地面、路堤及高架桥等,不同线路类型对高速列车气动特性的影响差异明显,尤其在强横风下,列车运行的流场特性更加复杂。为研究风沙环境下不同线路类型对高速列车横风气动特性的影响,采用数值模拟方法对列车运行速度250 km/h,横风风速分别为10,20,30,40,50 m/s,线路结构分别为平直地面、5 m路堤及10 m高架桥等不同工况下的列车气动性能进行仿真对比分析。计算结果表明:风沙环境下列车迎风侧正压区域及背风侧负压区域相比无沙环境均增大,其中,头车在平地工况下压力增幅最大,路堤及高架桥工况较小;风沙流中沙粒增加了列车的阻力,随着横风风速增大,头车阻力系数减小,尾车阻力系数增大,中间车阻力系数基本不变,列车侧向力系数均增大;在同一横风风速下,不同类型线路对头车的阻力系数和侧向力系数影响最大,其中,在路堤工况下列车稳定性较差,更容易发生侧翻危险。  相似文献   

3.
列车运行噪声是高架线路声屏障、地下线路活塞风井消声器的设计输入条件。通过列车运行噪声影响因素分析,建立了列车运行噪声估算的简化模型,推导了城市轨道交通列车在不同运行条件、不同运行速度时的运行噪声估算方法。  相似文献   

4.
建立了横风环境中高速列车运行于复线路堤上的三维空气动力学模型,开展了路堤高度和列车在复线路堤上的位置对高速列车气动性能影响的数值计算与对比分析。结果表明,路堤上列车周围的气流流速大于平地上的气流流速,导致路堤上列车气动性能较平地上恶劣;路堤高度和横风速度对高速列车在下风线上和上风线上气动性能的差异有重要影响;列车在下风线上运行比在上风线上运行更容易发生倾覆。  相似文献   

5.
为研究横风作用下泉州湾跨海大桥主桥的行车安全,基于风-车-轨-桥耦合振动分析方法,分析了横风作用下泉州湾跨海大桥主桥及桥上高速列车的动力响应,并根据既有规范评价标准,评价桥上列车的抗风安全性,提出了大风环境下桥上安全行车的风-车速阈值。结果表明:主梁跨中横、竖向动力响应随来流风速的增加而增大,尤其是主梁横向位移受来流风速的影响较为显著;列车动力响应随着车速的增加而增大,而高风速环境会放大车速对列车行车安全性的影响;与单线行车相比,双线列车作用主要影响桥梁的竖向位移,设计时速下约为单线作用的1.60~1.94倍,而车辆动力响应的变化较小;为保证桥上列车运行安全,当风速>20 m/s时,桥上行车需要限制速度,其中当风速<30 m/s时,建议关闭交通。  相似文献   

6.
基于大涡模拟的高速列车横风运行安全性研究   总被引:1,自引:0,他引:1  
结合高速列车空气动力学和多体系统动力学,研究横风对高速列车运行安全性的影响.首先采用大涡模拟计算方法,研究了不同横风风速下高速列车非定常气动载荷的时域及频域特性,列车周围流场结构及相应的非定常流场特性.然后建立高速列车多体系统动力学模型,将得到的气动力作为外加载荷作用于列车上,研究了不同横风风速下定常气动力和非定常气动力对直线上高速列车运行安全性的影响特性,计算结果表明,与定常气动力相比,作用于车身上的非定常气动力使列车的振动加剧.最后参照高速列车的安全运行标准,对高速列车的安全运行进行分析,为横风下高速列车的安全运行提供参考.  相似文献   

7.
郎天翼  王浩  张寒  王峰 《铁道学报》2023,(2):146-153
龙卷风是特异风灾害之一,常导致基础设施严重损毁,对其易发区高速铁路的安全运营有潜在威胁。为研究龙卷风作用下列车-桥梁系统气动特性,采用计算流体力学手段,开展车-桥系统龙卷风作用分析。首先,建立典型龙卷风发生装置数值模型,实现龙卷风流场数值模拟;其次,建立CRH2高速列车模型和典型铁路桥梁节段模型,开展横风作用下车-桥系统气动特性数值分析,并与风洞试验的结果进行对比,验证模型的合理性;最后,将车-桥模型嵌入龙卷风数值风场中,分析车-桥系统在龙卷风作用下的气动特性,研究列车在穿越龙卷风时所受侧力及倾侧力矩的变化规律。结果表明,龙卷风作用下车-桥系统气动性能呈现明显的三维特征,龙卷风涡旋气流的流线和风压分布受车-桥系统影响显著;龙卷风内部形成了负压场,在车-桥系统的影响下,内部负压区向外扩大,压力等值线沿着车-桥轮廓外凸;列车迎风面的压强沿径向增大,最小负压存在于迎风面和顶部转角处;列车在涡核附近区域受到侧力和倾侧力矩达到峰值,列车所受侧力作用最不利位置为迎风侧,所受倾侧力矩最不利位置为背风侧。  相似文献   

8.
针对高速铁路封闭式声屏障在列车风与横风作用下的风压荷载问题,采用中南大学自主研发的横风-移动列车风洞试验系统,研究横风和列车风作用下声屏障的风压荷载分布.研究结果表明:圆形断面封闭式声屏障外壁风压系数分布沿环向先减小后增大,与单圆柱的风压分布大致相似,给定风速下最大负风压系数-3.38;单车通过声屏障时脉动风压幅值与车速平方近似成正比,同一截面风压沿环向非均匀分布,近侧的压力峰值高于远侧,最大相差16%;2车交会时,交会区域风压峰值明显增大且极值风压出现在交会截面,其值约为单车通过时极值风压的2倍.  相似文献   

9.
研究目的:气流流经列车时,由于大气来流、线下结构和地形条件等影响,列车所受风荷载不一定为横风情况(90°风向角)。针对不同风向角下,风荷载作用下的列车通过典型铁路桥梁的动力问题,本文以20跨32 m高速铁路简支梁桥为背景,对不同风向角下桥上列车的气动特性进行风洞试验研究,并通过建立的基于刚柔耦合法的风-车-桥系统模型进行动力响应分析。研究结论:(1)随着风向角的减小,车辆的阻力系数逐渐减小;(2)随着风向角的减小,车辆的轮轴横向力、轮重减载率、脱轨系数和横向加速度动力响应值呈减小趋势;竖向加速度无明显变化规律,但在风向角为90°时竖向加速度最大;(3)横风情况时车辆的各动力响应值最大,行车最为不利;(4)本研究成果可为考虑复杂来流情况的风-车-桥耦合振动分析提供参考。  相似文献   

10.
针对普通环境下高速列车目标速度曲线优化算法不适用于横风环境的问题,提出一种横风环境下基于滚动GAPSO(遗传粒子群)算法的列车速度曲线优化方法。首先,考虑横风风速阻力作用改进列车动力学模型,并建立列车运行多目标优化模型;其次,基于GAPSO算法寻优巡航构建列车在起始阶段的最优目标速度曲线,引入滚动优化框架实时调整目标速度曲线,并在横风限速区按照改进快行策略运行;最后,在列车进站前采用GAPSO算法寻优惰行点生成目标速度曲线。仿真实验结果表明:GAPSO算法较GA算法和PSO算法具有搜索能力强、收敛速度快的优点;滚动GAPSO算法能在不同横风环境下实时生成优化后的目标速度曲线,并与改进快行策略和RH-PSO算法相比,具有较优的节能性和准时性。横风下基于滚动GAPSO算法的列车目标速度曲线优化可为横风环境下列车节能、准时运行提供一种可行的解决方案。  相似文献   

11.
受电弓系统的受流特性对高速列车的安全运行至关重要,受电弓的非定常气动特性严重影响受电弓系统的受流状态.本文采用脱体涡模拟(DES),对高速列车受电弓的非定常气动特性进行深入研究.研究表明:受电弓脱体涡的强度、脱落频率对受电弓气动升力系数影响很大.无横风条件下,受电弓受到的升力为负升力,列车运行速度为350 km/h时,其升力的波动幅度达110%,速度增加,其波动幅度增大,频率增大,受电弓的横向受力很小;横风条件下,受电弓的升力振动频率与无横风时有很大不同,升力系数变比不大,侧向力随横风速度的增大而增大.研究结果为高速受电弓的优化设计提供了依据.  相似文献   

12.
为研究隧道活塞风对地铁屏蔽门的影响,通过分析活塞风形成机理,构建两车、两车站、三区间隧道的地铁隧道模型,利用滑移网格技术仿真模拟列车在隧道运行时引起的活塞风速度与压力,并提取所研究车站屏蔽门区域所受活塞风的压力值。通过对屏蔽门进行静力学分析,利用屏蔽门所受最大阻力来衡量屏蔽门开关能力。将仿真结果与南宁地铁1号线的实际故障进行对比分析,研究不同工况下活塞风对屏蔽门的影响。研究结果表明:所建仿真模型有效、合理,屏蔽门所受最大风压受列车运行速度、屏蔽门位置及风井布置模式的综合影响。研究成果可为屏蔽门故障诊断和智能运维提供理论参考。  相似文献   

13.
基于轮轨滚动接触蠕滑理论和准定常抖振力,建立风-车-桥系统空间耦合振动分析模型并编制相应的计算程序。研究不同车速、不同风速下轻轨列车通过大跨度斜拉桥的走行性。结合列车走行特性,对列车各项安全性评定标准进行具体分析。研究表明将轮重减载率作为强风作用下列车运行安全性评定标准的是不合适的。建议将倾覆系数作为强风作用下列车运行安全性主要评定标准。  相似文献   

14.
基于高速列车-板式轨道系统空间振动分析理论,考虑横风作用效应,建立了风-高速列车-板式轨道系统振动分析模型,推导了列车风荷载势能;将它与列车振动势能及板式轨道振动势能相加,得出系统振动总势能;根据弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立系统空间振动矩阵方程,并编制了相应计算程序.分析了横风作用下高速列车和板式轨道的动力响应.研究结果表明:横风对车体的横向及竖向位移、轮重减载率、倾覆系数等有很大影响,对脱轨系数、横向Sperling 指标有一定的影响,而对钢轨的横向及竖向位移影响很小.  相似文献   

15.
横风对列车通过曲线限制速度影响的数值研究   总被引:3,自引:0,他引:3  
在简化列车外形的情况下,针对列车在不同风速下的气动力进行计算.为计算气动力,将三维雷诺平均N-S方程(RANS)结合k-ε湍流模型,用有限体积法将控制方程离散求解.用SIMPLE法耦合压力-速度场.在得出气动力的基础上,使用本文推导的横风作用下列车通过曲线轨道的限制速度公式,分析了气动升力、气动阻力对限制速度的影响.模拟计算结果显示,增大列车运行速度或横风速度都会增大列车的气动升力和气动阻力,并使之呈非线性增大的趋势.列车在高速、大横风情况下运行,以上2种非线性风险的影响使行车的安全性受到严重的威胁.升力的作用一般使列车通过曲线轨道的限制速度降低,而阻力对限制速度的影响主要取决于风向.  相似文献   

16.
强侧风对高速列车运行安全性影响研究   总被引:18,自引:3,他引:15  
在列车空气动力学和系统动力学相结合的基础上完成了相关研究工作。论文首先在研究列车受侧向风力的气动力特性基础上,利用流体力学计算软件FLUENT进行数值计算,得到不同侧风风速和列车车速下作用于车体的侧风载荷值;接着,利用所建立的高速列车动力学模型,将得到的风载荷值作为外加载荷作用于列车,研究了侧向风速对直线运行列车运行安全性的影响特性;最后,参照高速列车运行安全性相关限定标准,提出不同侧风风速下高速列车的最高安全运行速度,为特殊风环境下我国时速200 km/h及以上动车组安全运行提供理论依据。  相似文献   

17.
无竖井单线隧道活塞风影响因素分析   总被引:1,自引:0,他引:1  
采用非恒定流活塞风计算理论,按列车行驶在单线无竖井隧道中的不同位置,分四种情况(列车部分进入隧道,列车全部进入隧道,列车部分驶出隧道,列车全部驶出隧道后活塞风的衰减过程)建立了简化的活塞风分析数学模型.在此基础上,通过MATLAB软件进行数值求解,得到列车经过某区间隧道时的活塞风速度变化情况.分析了列车运行速度、列车长度、列车对隧道的阻塞比以及区间隧道长度对活塞风的影响.本方法可以作为列车以不同速度行驶在各种单线、无竖井隧道内活塞风速度的试用计算工具.  相似文献   

18.
横风下高速列车非定常空气动力特性研究   总被引:5,自引:3,他引:2  
通过大涡模拟(LES)数值计算方法,对均匀定常横风下高速列车的非定常空气动力特性进行了研究。计算得到横风下列车车体所受空气动力的时域及频域特性、列车周围非定常流动结构及相应非定常流场特性。对计算结果分析表明,即使在均匀定常横风下,列车所受空气动力也存在明显的非定常性。对于所研究车型,这种非定常空气动力的特征频率出现在11 Hz以下,并且主要峰值集中在0~3 Hz区间,这与列车系统本身的固有振动模态频率接近,存在横风引起列车系统共振,进而发生列车倾覆的可能;同时研究表明,横风下列车周围流场非定常特性与列车所受非定常空气动力特性在频域中存在对应关系,可以通过测量非定常流场确定列车非定常空气动力特性。  相似文献   

19.
以CRH3型高速列车为研究对象,采用计算流体力学(Computational Fluid Dynamics,CFD)数值模拟方法和动网格技术,通过局部动态层变法实现对侧向风作用下桥上列车交会过程的动态模拟,研究侧向风作用下桥上列车交会过程的空气动力特性。结果表明:无侧风情况下桥上列车交会时所产生的交会压力波是导致列车气动力波动的主要原因;在侧向风的作用下车-桥耦合系统的空气动力特性表现出明显的三维时空特性;与无侧向风作用相比,在侧向风的作用下,两交会列车车体表面的整体压力分布已不再具有对称性,其中迎风侧列车所受风荷载较背风侧列车的大;在列车交会过程中,由于迎风侧列车对侧向风的遮挡效应,使得背风侧列车的风荷载突变更加剧烈,这对背风侧列车过桥的安全性和舒适性更为不利;随着列车运行速度的提高,列车的侧向力系数、倾覆力矩系数逐渐增大,而且其气动力系数在列车交会瞬间的突变更加剧烈。  相似文献   

20.
横风强度对平原上集装箱列车横向稳定性的影响   总被引:1,自引:0,他引:1  
应用平原大气边界底层速度型,对平原上运行速度为120 km/h的集装箱列车在横风角为90°8~12级横风下的空气动力载荷进行数值研究.研究对象分别为机车牵引装载着12.192 m(40英尺)集装箱的3辆NX70型平车和3辆X6K型平车的计算模型.结果表明,平原上X6K型平车装载集装箱所受升力的平均值约为NX70型平车集装箱的25%左右;2个列车模型中位置相同的集装箱所受侧向力基本相等,集装箱所受翻滚力矩约为NX70型平车集装箱的60%左右.铁路集装箱车辆的设计对其在平原上装载集装箱所受升力的影响很大,对集装箱所受侧向力的影响很小;集装箱平车底架的大面积空隙有利于列车底部和集装箱底部之间的空气流通,可有效降低集装箱所受升力和翻滚力矩;合理的铁路车辆设计可在一定程度上提高平原上集装箱车辆运行的横风稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号