共查询到8条相似文献,搜索用时 15 毫秒
1.
北京地铁四号线宣武门站是国内首例下穿既有车站施工的暗挖地铁站,由于新站近距离下穿,为保证既有站的正常运营,给施工带来巨大挑战。从数值模拟和施工经验2个方面阐述了该项目施工方案的比选,经随后的施工实践证明,确定的施工方案是合理有效的,此施工方案对今后的下穿既有线施工有一定的参考价值。 相似文献
2.
根据工程类比以及大管棚的现场试验,对施工方法进行优化,采用变大跨为小跨的中洞法,在中洞部分采用导洞法开挖,把沉降控制在最小范围。借助数值分析方法,分析既有线的沉降规律,把握施工重点。根据现场实测及数值模拟结果,提出超前注浆及补偿抬升注浆、600咬合大管棚进行超前支护等多种施工辅助措施控制沉降,结果表明施工过程既有线结构沉降得到有效控制,最终沉降量小于20 mm。 相似文献
3.
以青岛某即将修建的线路下穿既有车站为例,利用有限元软件对地铁结构进行数值模拟分析,研究在硬岩地区,新建线路采用型钢格栅密贴下穿及采用CRD法近距离下穿2种方案引起的既有站底板位移变化的规律。主要结论如下:1)为了避免应力集中,下穿线路应尽量避免布置在既有线中柱下方。2)随着2条线路轨面标高距离的增加,开挖引起的既有线底板沉降及最大、最小主应力逐渐减小,当2条线路之间的净距达到3 m左右时,引起的底板沉降仅0.9 m左右,为密贴下穿的14.5%;最大、最小主应力为密贴下穿的75%左右。3)施工时应加强监控量测,必要时进行换撑施工线路二次衬砌。 相似文献
4.
为确保新建矿山法隧道下穿成都地铁既有1 号线孵化园车站结构的安全并控制既有车站的变形,采用有限元数值模拟分析的方法对不同衬砌形式的结构受力进行分析,计算得到的隧道内力及变形均能满足设计要求。由现场监测数据分析表明: 1)新建隧道拱顶沉降累计变化量稳定在-1. 5~-5. 0 mm,净空收敛累计变化量稳定在-5. 3~-9. 1 mm,既有地铁1 号线孵化园车站结构累计变化量稳定在+0. 71~+0. 94 mm,远小于控制值,工程设计安全可行; 2)在施工环境复杂且既有车站沉降控制变形要求高的情况下,说明了采用CRD 工法施工的正确性以及在站台层段为截桩单独设计二次衬砌的必要性。 相似文献
5.
为保证换乘节点施工安全,结合深圳地铁石厦站换乘节点实际情况,对可能出现的施工风险进行分析,提出应对风险的施工方案,并采用数值方法对不同施工方案进行分析比选。数值结果显示: 换乘节点开挖前注浆封闭止水,采用小导洞注浆+台阶法+临时仰拱分层、分块开挖等综合方案施作换乘节点是合理的。现场对既有结构的自动化监测数据显示,施工过程中3号线车站负2层中板最大竖向位移为5.6 mm,车站既有地下连续墙最大深层水平位移仅为0.6 mm,既有结构变形均远小于监测预警值。 相似文献
6.
2条平行暗挖输水隧道从北京地铁五棵松站下方穿过,2条隧道中心间距为94 m,隧道毛洞顶部距离车站底板仅3717 m,属于近接施工问题。为了确保输水隧道施工时,地铁车站结构及轨道的安全,采用三维有限元仿真分析的方法对输水隧道开挖全过程进行模拟。通过对地表位移和车站顶、底板位移随开挖过程变化规律进行计算分析,得出需要对输水隧道扩大段、注浆通道和下穿隧道周围的土体进行注浆加固,才能确保地表和轨道位移不超过规范所规定的限值,并提出为了降低施工过程中,地铁车站两侧因不均匀沉降而产生的扭矩,需要在车站两侧采用对称施工的建议。 相似文献
7.
北京地铁15号线奥林匹克公园站线路走向与既有大屯路隧道走向基本相同,车站主体结构位于大屯路隧道正下方,顶板与大屯路隧道底板密贴。为了解地铁车站结构施工对大屯路隧道的影响,采用数值方法,计算分析了地铁车站结构与大屯路隧道横向相对位置和车站结构施工期间土体注浆范围对大屯路隧道附加变形(沉降)的控制作用,结果表明横向相对位置不同与注浆区域不同对大屯路隧道变形均有明显影响。 相似文献
8.
“站桥合一、先桥后站”盖挖地铁车站关键施工方案的比选与优化 总被引:1,自引:0,他引:1
以某盖挖顺作地铁车站施工为例,对车站在复杂环境条件(站桥合一、先桥后站、地下管线密集、周边建筑邻近)下基坑开挖出土方案、钢管柱连接方案、钢筋混凝土支撑体系拆除方案等几项关键工序进行比选,介绍了各备选方案的优缺点。通过方案优化,最终选择了"出土孔上配龙门吊+局部坡道"开挖出土方案、钢管柱现场法兰连接方案及金刚石绳锯切割钢筋混凝土支撑体系方案,保证了车站的安全、质量和工期,效果良好。 相似文献