首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
利用列车空气动力学和轮轨动力学相结合的方法研究了动车组明线交会气动力对动力学的影响。首先采用流体软件FLUENT对动车组明线交会所受的气动力进行了研究,得到了不同交会速度下的各车气动力载荷;接着利用建立的动车组多体动力学模型,将气动力载荷作为轮轨动力学研究的载荷输入,研究了明线交会对动力学性能的影响。计算结果表明:明线交会对车体横向加速度较大,对轮轨力、脱轨系数和减载率等动力学性能影响有限。  相似文献   

2.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

3.
高速列车隧道内等速会车时气动作用力的数值模拟   总被引:1,自引:0,他引:1  
基于三维非稳态黏性Navier-Storkes方程及k-ε两方程紊流模型,利用包含移动网格技术的计算流体动力学方法,对高速列车在长隧道内等速交会过程进行动态数值模拟,模拟2列相同外型的列车以4种车速交会时的流场,分析会车过程中交会列车所受气动侧向力、侧翻力矩及偏转力矩的变化情况,初步得到隧道内会车时气动作用力的变化规律。计算结果表明:隧道内列车交会过程使列车受到较大的侧向力、侧翻力矩和偏转力矩;每节车厢侧向力和侧翻力矩方向经历2次变化;偏转力矩方向经历4次变化。气动力与力矩的大小是车速的二次方函数。气动力及气动力矩的变化率与车速的三次方成正比。  相似文献   

4.
采用流体力学计算软件FLUENT和动网格技术建立侧风下2列3节列车交会的气动力计算模型,通过自编UDF程序实现列车交会运动,分析列车交会过程中的气动力。根据列车中间车厢气动力的相似性扩展得到2列8节列车交会的气动力时程,将列车真实非定常的气动力以力元的方式加载到由有限元软件ANSYS和多体动力学软件SIMPACK联合建立的高速列车—多跨简支梁三维动力分析模型中,进行侧风下高速列车交会运行时车—桥耦合振动研究。结果表明:列车交会气动力对列车轮轴横向力、脱轨系数以及竖向加速度的影响较小,但会增大列车的轮重减载率,并显著增大列车的横向加速度;侧风显著增大列车的轮重减载率、轮轴横向力和脱轨系数;列车轮重减载率是控制列车车速阈值的控制因素;列车交会气动力对列车运行安全性的影响不应忽视,在[0,15),[15,20)和[20,25) m·s~(-1)风速的侧风下,列车车速阈值分别为350,275和200 km·h~(-1)。  相似文献   

5.
采用数值分析方法,计算高速列车在明线交会过程中列车所受气动载荷,建立列车系统动力学模型,求解列车在气动力作用下的横向振动。采用有限体积法对三维瞬态可压缩雷诺时均Navier-Stokes方程和RNGκ-ε方程湍流模型进行求解,并通过动网格动态铺层技术实现列车的运动,将计算出的气动力和力矩作用于车体,同时对轨道不平顺及气动载荷作用下的动力学进行分析与数值模拟。结果表明:明线列车交会过程中,在考虑气动力时,气动载荷的横向振动频率主要集中在0.5~6.5Hz范围内。列车横向振动加速度及横向平稳性的影响比只考虑轨道不平顺时明显增加,其中头车的影响最为明显。  相似文献   

6.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

7.
基于ALE方法的列车横风绕流动力学分析   总被引:2,自引:0,他引:2  
利用有限体积法对横风作用下列车周围的空气流场进行计算.结合车辆-轨道耦合动力学,采用任意拉格朗日-欧拉(ALE)方法处理列车与空气间存在的运动边界,实现了车辆系统动力学与计算流体力学之间的结合.以某国产客运列车为例,计算列车在20 m/s的横风作用下以160 km/h的速度运行时的动力学响应,给出列车周围的流场分布;分析了考虑与不考虑风-车之间流固耦合效应时,作用在车辆上的气动力和气动力矩的变化情况.结果表明,流固耦合效应对车体摇头力矩的影响比较大,而对于车体垂向、横向位移和加速度的影响甚微.  相似文献   

8.
建立了高速列车在隧道内和明线上交会的数值计算模型。利用有限体积法求解三维、可压、非定常N-S方程和k-ε两方程湍流模型,通过滑移网格技术实现列车的相对运动。分析了列车在隧道内和明线上以350 km/h等速交会过程中车体表面压力、气动荷载的变化规律。研究发现:列车在隧道内交会时,其车体表面压力比在明线上交会时约增加6 kPa,且车体表面压力的波动幅值是明线上交会时的2倍;交错车体表面的负压值比未交错表面的负压值大1.5kPa;气动力(矩)比在明线上交会时略小;头车、尾车气动阻力的变化规律与单车过隧道时相似,但阻力的变化峰值约是单车过隧道时的2.5倍。  相似文献   

9.
采用列车空气动力学和列车系统动力学方法研究横风环境下25T型客车与CRH5型动车组交会对25T型客车动力学性能的影响。利用三维、可压缩和非定常N-S方程的数值模拟方法计算不同横风风速、不同交会速度下作用于25T型客车车体的气动力及力矩。利用SIMPACK软件建立25T型客车三维系统动力学仿真模型,分析横风风速、车速以及交会对列车系统动力学性能的影响。研究结果表明:在交会开始以及结束时刻,列车的系统动力学性能下降;同时在脱轨系数、倾覆系数以及轮轴横向力中,倾覆系数最为敏感;在一定变化范围内,风速变化相比于车速变化对列车运行安全性影响更大,风速由20 m/s增加到25 m/s时列车的倾覆系数增加68%,而车速由120 km/h增加到160 km/h时列车的倾覆系数增加8%;在25T型客车车速为120,140和160 km/h时允许最高风速分别为32.8,33和32.6 m/s;交会对25T型客车动力学性能的影响随着风速的增加而增加,在风速为35 m/s时,交会对脱轨系数、倾覆系数以及轮轴横向力的影响率达到49%,42.2%和25.3%。  相似文献   

10.
以CRH3型高速列车为研究对象,采用计算流体力学(Computational Fluid Dynamics,CFD)数值模拟方法和动网格技术,通过局部动态层变法实现对侧向风作用下桥上列车交会过程的动态模拟,研究侧向风作用下桥上列车交会过程的空气动力特性。结果表明:无侧风情况下桥上列车交会时所产生的交会压力波是导致列车气动力波动的主要原因;在侧向风的作用下车-桥耦合系统的空气动力特性表现出明显的三维时空特性;与无侧向风作用相比,在侧向风的作用下,两交会列车车体表面的整体压力分布已不再具有对称性,其中迎风侧列车所受风荷载较背风侧列车的大;在列车交会过程中,由于迎风侧列车对侧向风的遮挡效应,使得背风侧列车的风荷载突变更加剧烈,这对背风侧列车过桥的安全性和舒适性更为不利;随着列车运行速度的提高,列车的侧向力系数、倾覆力矩系数逐渐增大,而且其气动力系数在列车交会瞬间的突变更加剧烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号