首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 108 毫秒
1.
雷达观测模型常常是非线性的,目标跟踪问题是一个非线性状态混合估计.考虑目标稳定跟踪与实时性要求,采用"当前"统计目标运动模型与粒子滤波(PF)非线性方法对雷达机动目标跟踪进行算法分析.仿真验证了"当前"统计模型下的非线性粒子滤波及扩展卡尔曼滤波(EKF)目标跟踪性能,表明非线性粒子滤波,尤其是U变换粒子滤波(UPF)目标跟踪精度和稳定性较好,值得工程应用与推广.  相似文献   

2.
针对水下被动目标跟踪的非高斯噪声环境和弱可观性的特点,提出了将粒子滤波算法应用于水下被动目标跟踪中的非线性问题,克服了常规的线性化方法易发散且跟踪精度低、误差大的缺点.仿真结果表明:粒子滤波算法提高了滤波的稳定性,跟踪精度优于扩展卡尔曼滤波算法和无迹卡尔曼滤波算法,收到了良好的效果,具有较高的实用价值.  相似文献   

3.
弹道再入目标轨迹跟踪是一个重要的非线性滤波应用问题。论文将常见的非线性滤波器分类为基于点的滤波器和基于密度的滤波器,对比分析了各类算法的基础理论原理,仿真实验得出在高斯噪声条件下,EKF要优于UKF和PF,在闪烁噪声条件下PF要优于EKF和UKF的结论。  相似文献   

4.
5.
声呐图像目标跟踪技术在水下UUV作战系统中具有重要意义,由于水声环境复杂,噪声干扰严重,导致声呐目标跟踪效果欠佳。本文针对UUV声呐成像特点,首先给出一种改进的Curvelet变换图像增强方法,可以有效降低声呐图像噪声并在一定程度上增强目标图像的边缘。并此基础上,提出一种基于粒子滤波的声呐目标跟踪算法以获得更为准确的目标跟踪效果。仿真结果表明,相较于传统声呐目标跟踪,该方法具有更好的目标跟踪精度以及鲁棒性。  相似文献   

6.
基于粒子滤波的无人机侦察图像跟踪算法研究   总被引:1,自引:0,他引:1  
针对无人机侦察图像跟踪的实时性以及战场环境复杂的特点,研究了在复杂背景下实现对单一目标跟踪,提出了一种基于粒子滤波的快速目标跟踪算法,通过计算机仿真将此方法与传统的目标跟踪方法进行了对比,实验结果表明,该算法能够稳健地跟踪目标,具有很好的准确性、实时性和鲁棒性。  相似文献   

7.
解决水下水声目标的定位跟踪问题,需要建立动态的非线性非高斯模型,粒子滤波直接采用未含有最新量测信息的状态转移先验分布函数作为重要性密度函数来逼近后验概率密度函数,无轨迹粒子滤波是在粒子滤波的过程中引入重采样技术,通过无轨迹变换设计重要性密度函数,使其更加接近系统状态后验概率密度。仿真结果表明粒子滤波和无轨迹粒子滤波算法都可以提高定位跟踪精度,但无轨迹粒子滤波算法的估计精度更高,更适用于工程实践。  相似文献   

8.
针对标准粒子滤波算法存在的粒子退化问题,提出了一种改进的粒子滤波算法,该算法将不敏卡尔曼滤波算法(UKF)、线性优化的思想和基本粒子滤波算法相结合,运用不敏卡尔曼滤波算法获得重要性概率密度函数,提高了粒子的使用效率;运用线性优化的思想,保证了所有粒子都以一定的概率对状态估计作出贡献,提高了粒子的多样性。仿真结果表明,改进的算法很好的解决了基本粒子滤波存在的粒子退化问题,具有更高的状态估计精度。  相似文献   

9.
针对粒子滤波计算量大的问题,将视觉跟踪领域的均值漂移算法(Mean Shift)与粒子滤波(PF)算法相结合,该算法利用均值漂移算法在重采样之后将粒子收敛到靠近目标真实状态的区域内,改善了传统粒子滤波器的退化现象,减少了算法的运行时间,通过被动跟踪仿真实例,同时使用均值漂移粒子滤波与传统粒子滤波进行跟踪仿真,分析了轨迹跟踪性能,利用均方根误差比较了误差性能。仿真结果表明,Mean Shift PF具有更高的跟踪精度,并且运行时间显著减少。  相似文献   

10.
提出了一种自适应进化策略算法(AES),该算法利用适应度值控制变异步长的自适应调整,从而提高了进化策略的搜索效率和精度。将AES算法和粒子滤波(PF)相结合,提出了基于自适应进化策略采样的粒子滤波算法(AESPF)。该算法将AES应用于粒子重采样,以保证粒子的有效性和多样性。通过仿真计算表明,提出的算法可以有效提高滤波性能。  相似文献   

11.
研究了无味粒子滤波器的基本思想和具体算法实现步骤,在给出的闪烁噪声统计模型基础上,将PF、UKF和UPF算法应用在雷达目标跟踪中,解决了闪烁噪声情况下的雷达目标跟踪问题,仿真结果表明,UPF的状态估计性能优越。  相似文献   

12.
为了解决非线性、非高斯系统目标跟踪问题,研究了一种新的滤波方法——高斯粒子滤波算法。通过基于重要性采样和蒙特卡罗模拟方法得到一高斯分布来近似未知状态变量的后验分布。并讨论了此算法在机动目标非线性转弯运动中的跟踪应用,与粒子滤波算法相比,其优点是不需要重采样步骤。在闪烁噪声下比较了高斯粒子滤波器、粒子滤波器和扩展卡尔曼滤波器在滤波精度、运算时间等方面的差异,仿真结果表明该算法性能优于其他算法。  相似文献   

13.
采用重要性重采样技术改进了标准粒子滤波算法,通过设定有效采样尺度来减少权值较小的粒子数目,在一定程度上克服了退化现象。仿真结果表明,采用PF跟踪机动目标,其跟踪精度要高于IMM,说明PF具有较强的处理非线性系统的能力;对标准PF采用重要性重采样策略后,PF的跟踪精度和平稳性都得到了进一步改善。  相似文献   

14.
无迹卡尔曼滤波算法(UFK)以少量的采样点表示随机变量的分布,通过非线性系统传播,能以三阶精度获得非线性变换的均值和协方差的估计.文章将其应用于三维水下目标跟踪系统中.通过系统的Mome Carlo仿真,验证了该滤波算法比传统的扩展卡尔曼滤波具有更高的滤波精度.  相似文献   

15.
传统算法在解决纯方位目标跟踪时存在有偏、收敛速度慢或发散等不足,无迹卡尔曼滤波(UKF)虽然改善了系统线性化误差,但并没有明显改善卡尔曼滤波器容易发散的问题。文章在扩展卡尔曼滤波和UKF算法的基础上,提出一种衰减记忆UKF算法(MAUKF),引进衰减因子加强对当前测量数据的利用,减小历史数据对滤波的影响。理论分析和仿真结果表明,MAUKF算法在纯方位目标跟踪中的滤波精度、稳定性和收敛时间都优于EKF、UKF算法。  相似文献   

16.
在多站测角的被动目标跟踪中,目标的状态与角度量测值之间存在非线性关系,现有的方法主要是对其进行线性化,但线性化过程会带来滤波精度的下降,甚至会产生滤波发散而丢失目标.无迹变换卡尔曼滤波器(Unscented Kalman Filter,UKF)通过产生采样sigma点对系统状态进行逼近,可以较好地解决这一问题.将UKF应用到多站测角被动目标跟踪问题中,并通过仿真试验证实了算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号