共查询到16条相似文献,搜索用时 108 毫秒
1.
2.
针对水下被动目标跟踪的非高斯噪声环境和弱可观性的特点,提出了将粒子滤波算法应用于水下被动目标跟踪中的非线性问题,克服了常规的线性化方法易发散且跟踪精度低、误差大的缺点.仿真结果表明:粒子滤波算法提高了滤波的稳定性,跟踪精度优于扩展卡尔曼滤波算法和无迹卡尔曼滤波算法,收到了良好的效果,具有较高的实用价值. 相似文献
3.
5.
6.
7.
8.
9.
10.
11.
研究了无味粒子滤波器的基本思想和具体算法实现步骤,在给出的闪烁噪声统计模型基础上,将PF、UKF和UPF算法应用在雷达目标跟踪中,解决了闪烁噪声情况下的雷达目标跟踪问题,仿真结果表明,UPF的状态估计性能优越。 相似文献
12.
为了解决非线性、非高斯系统目标跟踪问题,研究了一种新的滤波方法——高斯粒子滤波算法。通过基于重要性采样和蒙特卡罗模拟方法得到一高斯分布来近似未知状态变量的后验分布。并讨论了此算法在机动目标非线性转弯运动中的跟踪应用,与粒子滤波算法相比,其优点是不需要重采样步骤。在闪烁噪声下比较了高斯粒子滤波器、粒子滤波器和扩展卡尔曼滤波器在滤波精度、运算时间等方面的差异,仿真结果表明该算法性能优于其他算法。 相似文献
13.
采用重要性重采样技术改进了标准粒子滤波算法,通过设定有效采样尺度来减少权值较小的粒子数目,在一定程度上克服了退化现象。仿真结果表明,采用PF跟踪机动目标,其跟踪精度要高于IMM,说明PF具有较强的处理非线性系统的能力;对标准PF采用重要性重采样策略后,PF的跟踪精度和平稳性都得到了进一步改善。 相似文献
14.
15.
16.
在多站测角的被动目标跟踪中,目标的状态与角度量测值之间存在非线性关系,现有的方法主要是对其进行线性化,但线性化过程会带来滤波精度的下降,甚至会产生滤波发散而丢失目标.无迹变换卡尔曼滤波器(Unscented Kalman Filter,UKF)通过产生采样sigma点对系统状态进行逼近,可以较好地解决这一问题.将UKF应用到多站测角被动目标跟踪问题中,并通过仿真试验证实了算法的有效性. 相似文献