首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
综合考虑缸套热变形、缸套温度场、弹性变形以及润滑油变黏度等因素影响,建立活塞环-缸套摩擦副的瞬态流体动压润滑计算模型,分析发动机工况、活塞环-缸套接触面粗糙度方向和粗糙度大小对摩擦功耗和窜气量的影响。研究发现,当转速升高时,摩擦功耗升高,影响发动机效率;活塞环采用横向粗糙度方向和缸套采用纵向粗糙度方向的组合,能够同时使窜气量和摩擦功耗处于较低的水平;综合粗糙度一致时,采用活塞环表面粗糙度低于缸套表面粗糙度的组合,能有效降低摩擦功耗。  相似文献   

2.
在活塞式发动机上,缸套温度对于摩擦和润滑油油膜厚度的影响最为强烈。随着缸套温度的升高,流体动力的摩擦力和因此而引起的摩擦损失减少。同时,活塞环上的润滑油油膜厚度减薄,上止点和下止点换向部位的混合摩擦力增大,磨损增大。 缸套温度不变的情况下,随着转速提高,流体动力的摩擦力和摩擦损失增加。油膜增厚,混合摩擦力减小,磨损也减较。 缸套温度相同的情况下,压力负荷增大,油膜厚度变薄,尤其是在膨胀冲程时,混合摩擦力增强,同时磨损也增加。 在几种试验用的第一道压缩环的轮廓线之中,对于摩擦、磨损和润滑油控制来说,有一种最佳的断面轮廓线。在目前工作情况下,这是与经过了大量研究且在长期运用实践中成熟了的环截面的试验结果相符的。 摩擦和油膜厚度、混合摩擦力和环与缸套磨损比率、以及油膜厚度和油耗之间的相互关系表明,利用此种类型的试验装置,能够准确地测得有关的物理关系并且可以应用在批量生产的发动机上。  相似文献   

3.
基于活塞二阶运动方程和裙部流体动压润滑模型,建立了活塞和缸套的结构动力学模型,以分析缸套弹性变形对活塞二阶运动和裙部润滑特性的影响。结果表明:不同曲轴转角下缸套的变形不同,做功行程中变形明显,而且最大变形量出现的区域随转角的变化而改变;考虑缸套弹性变形后,活塞二阶运动有所加剧,在压缩和做功行程中更加明显;在做功行程中裙部最小油膜厚度明显减小,而总摩擦功耗显著增加,在其它行程中两者均无显著改变;油膜压力场峰值变小,在进气和做功行程中减小明显,但压力场分布基本不变。  相似文献   

4.
以发动机缸套-活塞环摩擦副为对象,研究润滑表面粗糙度、润滑油的变黏度效应以及气缸套圆周方向的形变等因素对润滑状态的影响。运用三维瞬态平均Reynolds方程与微凸体接触模型,建立缸套-活塞环三维瞬态动压润滑模型,并使用Fortran语言编制了润滑状态计算程序,得出行程内的最小油膜厚度、压力分布、摩擦力等曲线。结合实际工况对计算结果进行分析,表明在活塞环圆周方向上的油膜压力及油膜厚度分布都是不均匀的,有明显变化;在压缩冲程上止点附近,微凸体摩擦力数倍于流体摩擦力,是引起摩擦磨损的主要原因。  相似文献   

5.
表面织构活塞环与CuO纳米润滑油协同润滑特性数值研究   总被引:1,自引:0,他引:1  
建立了活塞环-缸套流体动压润滑数值模型,研究表面织构和CuO纳米润滑油对活塞环协同润滑机理。研究结果表明:CuO纳米润滑油能有效减小粗糙接触力,降低磨损,但会引起流体黏性剪切力增加;活塞环织构表面与缸套之间形成的微动压效应对动压润滑有促进作用,能有效减小流体摩擦力,减少摩擦损失,但在上下止点附近会导致粗糙接触力增加,磨损加剧;活塞环表面织构的位置会影响其摩擦性能,对比发现中间织构效果最好,与无织构活塞环相比能减小摩擦损失5.17%;表面织构和CuO纳米润滑油之间存在协同润滑作用,合适浓度的纳米润滑油和一定尺度的表面织构能在减少活塞环摩擦损失的同时降低磨损。本研究中中间织构活塞环和体积分数0.5%CuO纳米润滑油组成的协同润滑能达到最佳润滑性能。  相似文献   

6.
以弹流润滑理论为基础,发展了一种活塞环三维弹性流体动压润滑数值分析模型。为了研究气缸套径向变形对活塞环弹流润滑性能的影响,建立了椭圆形气缸套模型,分析了气缸套不同变形量时的油膜压力、油膜厚度和润滑表面弹性变形等性能参数。计算结果表明,气缸套径向发生变形时,油膜压力分布、最大油膜压力、油膜厚度分布、最小油膜厚度以及润滑表面弹性变形等都会发生明显变化。因此,分析活塞环弹流润滑性能时考虑气缸套径向变形的影响是非常必要的。此外,为了提高活塞环润滑性能应尽量减少气缸套和活塞环的径向变形量。  相似文献   

7.
<正> 现代民内燃机的动力储备在很大程度上由活塞环-缸套摩擦副的工作能力所决定,并且首先要由这个摩擦副保证有可靠的润滑条件所决定。应当指出,发动机活塞环-缸套上部润滑油工作条件非常苛刻:活塞环-缸套零件的高温使润滑油粘度急刷下降,接近上死点顶部空间的工作气体压力达到最大值,活塞环处的油膜液体动力压力趋近于零。这样,活塞环与缸套在此区间的接触条件接近于临界状态。此外,当活塞工作行程下行时,活塞的顶环在气缸表面上所形成的润滑油膜厚度,对评定润滑油工作热氧化条件,以及润滑油在发动机整个润  相似文献   

8.
发动机活塞环-缸套低摩擦设计仿真分析   总被引:1,自引:0,他引:1  
以某直列3缸汽油机为研究对象,建立了仿真计算模型,验证了模型的正确性,利用该模型分析了活塞环结构对活塞环-缸套摩擦副润滑的影响。研究表明:过大或过小的活塞环径向桶面高度都会增加活塞环-缸套摩擦副的摩擦损失;在保证发动机平稳运行的基础上,应尽可能选择小的切向弹力;开口间隙对活塞环-缸套之间的窜气量影响很大,冷态时,该款发动机开口间隙为0.38~0.40mm时最佳。  相似文献   

9.
活塞组件-缸套是内燃机最重要的摩擦副之一,研究活塞组件-缸套摩擦副的润滑有助于提高内燃机的动力性、经济性、可靠性和耐久性等。针对内燃机活塞组件-缸套摩擦副的主要组成部分,论述活塞环-缸套摩擦副和活塞裙-缸套摩擦副润滑研究的主要成果。基于目前的研究现状,理论和方法不够完善,与实际情况不完全相符,讨论和展望活塞组件-缸套摩擦副润滑有待深入研究的问题。  相似文献   

10.
柴油机活塞环缸套摩擦学特性研究   总被引:1,自引:0,他引:1  
利用CETR摩擦磨损试验机测试分析了柴油机常用的4种表面功能层活塞环与4种合金铸铁材料缸套摩擦副的摩擦因数和磨损系数,结合摩擦界面形貌和成分分析,初步确定了不同活塞环-缸套摩擦副的磨损机制.研究结果表明,陶瓷复合镀层活塞环-缸套摩擦副具有稳定和优良的摩擦学特性,耐磨性大幅度提高;镀铬环-缸套摩擦副物理化学性质稳定,但摩擦因数和磨损系数高;喷铜环-缸套摩擦副物理化学性质不稳定,出现钼颗粒剥落和形成表面复合膜等现象,摩擦因数曲线出现拐点,缸套和活塞环都具有最大的磨损系数.  相似文献   

11.
直线度误差对活塞销轴承润滑性能的影响   总被引:1,自引:0,他引:1  
基于Reynolds润滑方程和油膜厚度方程,研究了直线度误差对轴承润滑性能的影响,建立了轴向几何型线的数学表达公式;针对某高速大功率柴油机,建立了详细的单缸计算分析仿真模型;研究了锥形、喇叭形、桶形和三角形误差对活塞销轴承的最小油膜厚度、最大油膜压力、轴瓦最大摩擦力矩、平均摩擦功损失以及油膜温度变化曲线和温度场分布的影响规律.研究结果表明:不同活塞销直线度误差的素线形状对轴承润滑性能的影响不同,素线形状的极值点位置对活塞销动态特性和轴承润滑性能的影响较大,素线曲率的影响要小些;使活塞销素线形状失去对称性,或使活塞销刚度减小的误差,对轴承润滑不利,有导致衬套脱落、烧蚀的危险.  相似文献   

12.
活塞、活塞环的摩擦以及润滑油粘度对燃料经济性的影响   总被引:1,自引:0,他引:1  
论述了活塞、活塞环的摩擦以及润滑油粘度对燃料经济性的影响。研究表明,气缸套的润滑主要是流体动力润滑,在活塞运动到上止点时,活塞环和气缸套之间因局部接触而发生混合润滑。通过降低润滑油的粘度和添加减摩剂,可以改善润滑而提高燃料的经济性。  相似文献   

13.
在自制的基于摩擦力的活塞环槽温度限值测试装置上,采用火焰加热活塞模拟内燃机燃烧室的燃烧过程,在加热强度一定的条件下,分别研究不同冷却强度、配对副以及润滑介质时缸套-活塞环间的摩擦力随活塞环槽温度的变化。结果发现:活塞环槽温度限值随冷却强度的增大而逐渐提高;CKS环与镀铬缸套配副时比镀铬环以及喷钼环与镀铬缸套配副时活塞环槽温度限值高;SAE15W/40润滑油作为润滑介质时比SAE40,SAE10W/30润滑油作为润滑介质时活塞环槽温度限值高。  相似文献   

14.
小型汽油机缸套——活塞环摩擦副是发动机中非常重要的一对摩擦副,功能是防止燃气泄漏及过量润滑油进入燃烧室,任何一方过量磨损都影响发动机的性能和排放。在负荷和转速不高的汽油机上使用表面未经过强化的铝合金气缸,合理选取活塞环的材料和相关结构参数,既可满足使用要求,又能降低生产成本。  相似文献   

15.
缸套-活塞环摩擦副的磨损润滑研究现状与发展前景   总被引:1,自引:0,他引:1  
分析了气缸套-活塞环的磨损润滑机理,并比较了材料表面处理的多种方法,如机械处理、激光珩磨等的优缺点,得出气缸套表面分部处理的思路,并提出了摩擦副减摩润滑的基本研究思路。  相似文献   

16.
以某直列3缸汽油机为研究对象,利用 AVL EXCITE 软件建立了曲轴多体动力学仿真模型,通过台架试验,验证了该仿真模型的正确性,在此模型基础上分析了润滑油温度、供油压力以及润滑油种类对发动机曲轴摩擦功的影响规律。研究表明:指定条件下的曲轴摩擦损失功率仿真结果为106.6 W ,台架试验结果为102 W ,误差在5%以内,表明仿真模型具有相当的精度;当润滑油供油温度从40℃升高到110℃时,曲轴摩擦损失功率减小到最低,约为104 W ,当温度超过110℃后,摩擦损失增加,当温度上升到150℃时,摩擦损失功率达到140 W ,润滑条件急剧恶化;当轴承主油道入口压力从0.31 MPa 增加到0.4 MPa 时,曲轴摩擦功率减小约10 W ,且供油温度较低时润滑油供油压力对曲轴摩擦功率影响较大;曲轴摩擦功率随黏度的提高而增加,供油温度较低时,润滑油黏度对曲轴摩擦功率的影响较大。  相似文献   

17.
根据柴油机活塞环/气缸套快速磨损模拟试验结果,分析了铌铸铁活塞环的磨损性能,对比考察了活塞环外圆是否镀铬对气缸套磨损性能的影响。试验结果表明,铌铸铁活塞环的磨损性能有显著提高,外圆未镀铬的铌铸铁油环与气缸套材料有良好的匹配性能。装机使用表明,铌铸铁油环与原镀铬油环相比,具有成本低、耐磨性好和无镀铬污染等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号