首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helical strakes are known to reduce and even eliminate the oscillation amplitude of vortex-induced vibrations (VIV). This reduction will increase the fatigue life. The optimum length and position of the helical strakes for a given riser will vary with the current profile.

The purpose of the present paper is to describe how data from VIV experiments with suppressing devices like fairings and strakes can be implemented into a theoretical VIV model. The computer program is based on an empirical model for calculation of VIV. Suppression devices can be accounted for by using user-defined data for hydrodynamic coefficients, i.e. lift and damping coefficients, for the selected segments.

The effect of strakes on fatigue damage due to cross flow VIV is illustrated for a vertical riser exposed to sheared and uniform current. Comparison of measured and calculated fatigue life is performed for a model riser equipped with helical strakes. A systematic study of length of a section with strakes for a set of current profiles is done and the results are also presented.  相似文献   


2.
顶张力对深水刚性立管涡激振动及疲劳损伤的影响   总被引:1,自引:1,他引:0  
上官丽红 《船海工程》2011,40(2):111-114,118
分析讨论顶张力对深水刚性立管在剪切流中的涡激振动响应和疲劳损伤的影响。从理论上分析张力对刚性立管固有特性的影响,并利用OrcaFlex软件建立数值模型,模拟不同顶张力系数下立管于剪切流中的涡激振动响应,同时采用S-N曲线法计算立管疲劳损伤。结果表明,顶张力对立管的影响直接体现在刚度上,立管刚度随着张力的增大而增大,因此顶张力对降低立管疲劳损伤有一定积极作用。但是随着顶张力的增大,其对降低疲劳损伤的贡献越来越小,而对立管强度储备的危害却逐渐增大。  相似文献   

3.
Vortex-induced vibration (VIV) of a flexible cylinder in oscillatory flow was experimentally investigated in an ocean basin. An intermittent VIV was confirmed to have occurred during the tests. The fatigue damage caused by VIV was calculated based on rainflow counting and a standard S–N curve. There are 3 main observations for fatigue damage from VIV in oscillatory flow: 1) the damage varied significantly with the KC number, which is a unique feature for VIV in oscillatory flow. 2) Fatigue damage at small KC number cases was found to be larger compared to those at large KC numbers owing to the fact that number of vortex shedding cycles per half of the motion cycle is low, and damping within half of the motion cycle will hence become low. The fact that vortices from the previous cycle still are active during the next may also contribute to the large response at small KC numbers. 3) ‘Amplitude modulation’ and ‘mode transition’, two specific features for VIV in oscillatory flow, were found to have a strong influence on fatigue. Fatigue damage has also been calculated by an empirical VIV prediction model assuming that all cases have steady flow at an equivalent velocity. Finally, a simplified method for calculating fatigue damage from VIV in oscillatory flow based on steady flow conditions is proposed. A modification factor diagram is presented, but the scope of the present study is too limited to provide a good basis for a general model for this factor. A general model for how to apply results from constant current analysis to predict fatigue in oscillatory flow will therefore need further research.  相似文献   

4.
The fatigue damage of a long deepwater riser undergoing in-line and cross-flow vortex-induced vibration (VIV) in deepwater is numerically studied using pseudo-excitation method (PEM) in present paper. For evaluating the fluid–structure interaction problem of vortex-induced vibration of deepwater riser at high Reynolds number, the strip theory is employed in this paper, and the discrete vortex method (DVM) is used to calculate the VIV of each strip to obtain the load spectrum as the pseudo-excitation, while the finite volume method (FVM) is employed to evaluate the structure dynamics of a deepwater riser. The VIV is considered as a stationary random process. The response of riser to vortex induced excitation is calculated using pseudo-excitation method. The DVM model and pseudo-excitation method are both validated by comparing their numerical results with experiments. The fatigue damage of one deepwater riser is evaluated based on the Palmgren–Miner Rule.  相似文献   

5.
Existing VIV prediction approaches for steel catenary riser (SCR) typically employ truncation model without considering the interaction between the SCR and soil, and only allow for cross-flow (CF) VIV. In this study, a time domain approach accounting for the SCR-soil interaction is proposed to predict the CF and in-line (IL) VIV induced fatigue damage of a SCR at touchdown zone (TDZ). The hydrodynamic force resulting from the vortex shedding is modeled using the forced oscillation test data of a rigid cylinder and an empirical damping model, which are defined as functions of the non-dimensional dominant frequency and amplitude of the SCR response. Due to the coupling effect, the IL VIV force is magnified based on the CF VIV amplitude. By combining a linear hysteretic interaction model with a trench shape model, some particular phenomena during the vertical SCR-soil interaction are captured and qualitatively discussed, while for the horizontal direction, the seabed is simplified as nonlinear spring model. Based on these models, parametric studies are conducted to broaden the understanding of the sensitivity of VIV induced fatigue damage to the seabed characteristic. The results indicate trench depth, vertical and lateral stiffness, and clay suction are significantly affect the VIV induced maximum fatigue damage at TDZ.  相似文献   

6.
Under the actions of ocean currents and/or waves, deep-sea flexible risers are often subject to vortex-induced vibration (VIV). The VIV can lead to severe fatigue and structural safety issues caused by oscillatory periodic stress and large-amplitude displacement. As flexible risers have natural modes with lower frequency and higher density, a multimode VIV is likely to occur in risers under the action of ocean currents, which is considered as shear flow. To decrease the response level of the VIV of the riser actively, a multimode control approach that uses a bending moment at the top end of the riser via an LQR optimal controller is developed in this study. The dynamic equations of a flexible riser including the control bending moment in shear flow are established both in the time and state-space domains. The LQR controllers are then designed to optimize the objective function, which indicates the minimum cost of the riser's VIV response and control input energy based on the Riccati equation of the closed-loop system under the assumption that the lift coefficient distribution is constant. Finally, the VIV responses of both the original and closed-loop systems under different flow velocities are examined through numerical simulations. The results demonstrate that the designed active control approaches can effectively reduce the riser displacement/angle by approximately 71%–89% compared with that of the original system. Further, for multimode control, the presented mode-weighted control is more effective than the mode-averaged control; the decrease in displacement is approximately 1.13 times than that of the mode-averaged control. Owing to the increase in flow velocity as more and higher-order modes are excited, the VIV response of the original system decreases slightly while the frequency response gradually increases. For the closed-loop system, the response becomes smaller and more complicated, and the efficiency of the controller becomes lower at a certain flow velocity.  相似文献   

7.
孙丽萍  徐莹  羊卫  付森 《船舶工程》2016,38(10):1-5
自由站立式立管可作为南海油气开发的立管形式。根据设计参数建立自由站立式立管系统模型,根据南海某油田环境参数校核立管各工况下的强度结果并进行疲劳分析,探讨自由站立式立管动态强度与疲劳特性并验证是否满足规范要求。分析结果表明:该立管设计满足规范中的强度与疲劳要求,且疲劳性能较好;立管等效应力最大处为立管主体顶部应力节下端;最危险浪流方向为沿立管向平台方向;立管主体应力水平受平台运动影响较小,受顶部张紧力以及海流大小影响较大;疲劳损伤最大处位于立管主体顶部,且涡激疲劳损伤大于浪致疲劳损伤。  相似文献   

8.
深水立管在来流作用下容易产生流向和横向的周期性位移振动(VIV),这种流固耦合作用会加剧立管结构疲劳,最终导致其功能失效。之前的研究发现螺旋侧板可以有效的抑制VIV的影响,其中侧板高度和螺距等几何参数决定其抑制效率。文章主要基于CFD对不同高度螺旋侧板的立管的尾流场进行数值模拟。结果表明:在研究范围内,螺旋侧板随高度增大抑制VIV效果越好,在H=0.25D(D为立管直径)时作用最佳,但拖曳力系数明显增大,同时来流方向和螺旋侧板的夹角也会影响其抑制效率。  相似文献   

9.
康庄  梁文洲  齐博  郑翔 《武汉造船》2012,(1):88-91,95
考虑到集束塔式立管比单根塔式立管在总体疲劳分析时更加复杂,利用"等效"理论方法对集束塔式立管进行处理,建立集束塔式立管有限元模型,提出集束塔式立管总体疲劳(包括运动疲劳和VIV疲劳)的分析方法,并通过实际的案例给出相关计算结果,证明该方法是正确和合理性的。  相似文献   

10.
孟彦鑫  付世晓 《船舶工程》2020,42(3):128-134
在靠近海底井口位置,隔水管周围流场受井口系统的影响发生变化,流固耦合下涡激振动可能诱发隔水管在横流向(CF方向)更为剧烈的振动。为了研究受管土装置影响的隔水管涡激振动响应特性,使用自主设计的管土装置模拟海底井口,采用8 m柔性立管,进行了均匀流下单管和受管土装置影响的涡激振动对比试验。试验通过FBG光纤应变片测得应变信息,使用模态叠加法、FFT变换处理分析试验数据,对比分析2组隔水管的主导频率、应变时历与幅值谱、无因次振幅以及激励力系数等参数沿管径的分布情况。结果发现管土装置影响下,隔水管主导频率减小;CF方向涡激振动增大,振幅沿径向呈非对称特征;涡激振动振幅更大,隔水管受流场的激励与阻尼更为剧烈。  相似文献   

11.
康庄  吴莹  张嘉  秦伟 《船海工程》2013,(5):166-170
针对西非海域的塔式立管,考虑沿水深变化的不同流速截面,分析塔式立管在不同参数下的涡激振动响应及疲劳损伤沿管分布,讨论立管顶部张力、管内流体密度、立管外径、立管壁厚和SHEAR7能量阈值等参数的变化对疲劳损伤的影响.结果显示,由于制造和安装误差等因素导致这些参数的改变,对结构的涡激振动疲劳损伤影响显著,应该在工程设计中引起注意.  相似文献   

12.
娄敏  冯健  王艳红 《船舶工程》2019,41(7):145-151
顺应式垂直通路立管(CVAR)是目前处于研究阶段的一种新型的立管类型,在海流作用下产生涡激振动,在平台垂荡运动作用下产生参数激励振动。为了研究参数激励的影响,本文引入尾流振子模型模拟漩涡脱落对立管的作用,同时考虑浮式平台升沉运动产生的参数激励,建立了CVAR参激-涡激联合振动方程,获取联合作用下的动力响应,并与纯涡激振动响应进行对比。结果表明,在相同的流速下CVAR中部涡激振动幅值最大,流速的增大会导致涡激振动的频率增大,发生高阶锁振,高阶锁振振动幅值比低阶锁振振动幅值小。考虑参数激励之后,较纯涡激振动而言,立管的振动幅值增大;当参激频率与涡激振动频率接近时,立管的振动幅值最大。  相似文献   

13.
Long term time domain analysis of the nominal stress for fatigue assessment of the tower and platform members of a three-column semi-submersible was performed by fully coupled time domain analyses in Simo-Riflex-AeroDyn. By combining the nominal stress ranges with stress concentration factors, hot spot stresses for fatigue damage calculation can be obtained. The aim of the study was to investigate the necessary simulation duration, number of random realisations and bin sizes for the discretisation of the joint wind and wave distribution. A total of 2316 3-h time domain simulations, were performed.In mild sea states with wind speeds between 7 and 9 m/s, the tower and pontoon experienced high fatigue damage due to resonance in the first bending frequency of the tower from the tower wake blade passing frequency (3P).Important fatigue effects seemed to be captured by 1 h simulations, and the sensitivity to number of random realisations was low when running simulations of more than 1 h. Fatigue damage for the tower base converged faster with simulation duration and number of random realisations than it did for the platform members.Bin sizes of 2 m/s for wind, 1 s for wave periods and 1 m for wave heights seemed to give acceptable estimates of total fatigue damage. It is, however, important that wind speeds that give coinciding 3P and tower resonance are included and that wave periods that give the largest pitch motion are included in the analysis.  相似文献   

14.
螺旋列板绕流流场CFD分析   总被引:3,自引:0,他引:3  
隔水管是海洋钻井作业的关键设备,其安全性至关重要.涡激振动是隔水管失效的重要因素.水深小于500m时,优化隔水管系统可以避免使用涡激抑制装置,超过1000m,必须采用涡激抑制装置.螺旋列板是现场常用的涡激抑制装置.基于流体动力学方法,利用FLUENT软件求解螺旋列板三维绕流流场的控制方程,同时计算了钝体隔水管三维绕流流场,流场参数(升力系数、曳力系数、涡量等)特征进行对比分析,显示出螺旋列板在涡激抑制方面的优势.计算结果表明,虽然螺旋列板能够减小横向升力,但同时会导致流向曳力明显增加.  相似文献   

15.
A large-scale model test of a free-hanging water intake riser (WIR) is performed in an ocean basin to investigate the riser responses under vessel motion. Top end of the WIR is forced to oscillate at given vessel motion trajectories. Fiber Brag Grating (FBG) strain sensors are used to measure the WIR dynamic responses. Experimental results firstly confirms that the free-hanging WIR would experience out-of-plane vortex-induced vibrations (VIVs) under pure vessel motion even for the case with a KC number as low as 5. Meanwhile, comparison between numerical results and experimental measurements suggests a significant drag amplification by out-of-plane vessel motion-induced VIV. What’s more, further study on WIR response frequencies and cross section trajectories reveals a strong correlation between vessel motion-induced VIV and local KC number distribution, owing to the small KC number effect. The presented work provides useful references for gaining a better understanding on VIV induced by vessel motion, and for the development of future prediction models.  相似文献   

16.
低质量-阻尼因子圆柱体的涡激振动预报模型   总被引:6,自引:1,他引:5  
本文考查了在均匀来流中作横向振荡的圆柱体与周围流体之间的能量转移,由此建立了基于受迫振荡实验数据的弹性支撑圆柱体在均匀流中的涡激振动响应预报模型.根据此模型,分析了低质量-阻尼因子圆柱体的涡激振动响应特性.就水中圆柱体涡激振动响应特性相关的几个关键性问题进行了深入的讨论,包括响应振幅的决定因素、附加质量对锁定范围及响应频率的影响.正确理解这些问题对于深水立管涡激振动响应的有效预报至关重要.  相似文献   

17.
Vortex-induced vibration (VIV) of flexible risers with both internal and external flows has received much attention recently. Hence, VIV dynamics of a fluid-conveying flexible riser subjected to external shear current is investigated. The effect of internal flow velocity and fluid density on VIV response is mainly examined and analyzed. A time domain model is introduced and elaborated. Then the finite element method is adopted to discretize the governing equations. Firstly, the model is validated based on the comparison between the numerical and experimental results. Then the influence of the internal flow velocity and fluid density on VIV dynamics is studied. The results show that multi-frequency response occurs when the flexible riser with various internal flow velocities and densities is subjected to external shear current. Under same shear current velocity, the IL mean deflection is enlarged with the increase of the internal flow velocity and fluid density. In addition, the internal flow velocity and fluid density have an evident effect on the vibrating frequency and the root mean square (RMS) displacement in both in-line (IL) and cross-flow (CF) directions. Moreover, mode and frequency transitions can be observed under different internal flow velocities and fluid densities.  相似文献   

18.
钢悬链线立管的疲劳分析得到越来越多的重视,尤其是其与海床土体相互作用引起的疲劳。本文根据 Aubeny提出的管土作用模型以及 Bridge提出的土体吸力模型,采用有限元方法,在考虑其与海床土体相互作用的基础上,分析了钢悬链线立管在不同载况作用下的动力响应及疲劳损伤。分析发现,钢悬链线立管上触地点和悬挂点处的疲劳损伤更为显著;洋流载荷对立管疲劳损伤的影响随着水深的增加而减弱;土体吸力的存在,会增大触地段尤其是触地点附近的疲劳损伤;立管触地点附近的疲劳损伤与土体刚度呈正相关。  相似文献   

19.
悬链线立管会在半潜平台运动带动下出现涡激振动现象,对立管疲劳寿命造成影响.借助海工结构物动力分析软件Orcaflex建立立管模型,使用Iwan-Blevins尾流振子模型进行数值模拟.通过与试验结果对比验证了该方法的可行性.同时建立实尺度悬链线立管模型,并考虑背景海流的影响,分析平台垂荡、纵荡运动下的立管涡激振动响应和疲劳损伤.研究表明,平台运动产生的非定常流场将引起悬链线立管发生涡激振动现象,并在背景洋流激励的基础上增大疲劳损伤,在立管结构实际工程设计时应予以关注.  相似文献   

20.
张力腿涡激振动易引起系泊系统的疲劳损伤,危害张力腿平台的安全性和可靠性。该文借鉴细长立管涡激振动的相关研究,同时考虑张力腿与立管在截面尺度、预张力大小以及边界条件存在的巨大差距,采用切片理论结合CFD数值模拟方法,对平台运动影响下张力腿涡激振动开展了研究。考虑定常张力与时变张力对涡激振动的影响,采用GAMBIT软件分区建立了多切片计算网格,将编制求解涡激振动的UDF程序嵌入Fluent软件中,采用动网格技术实现流场的更新并计算作用于张力腿上的瞬时升力和拖曳力。文中还比较了仅考虑流和考虑浪、流联合作用张力腿的时变张力影响,研究了两种典型波高共计六种工况,计算结果表明:随着流速的增加,各模态权重比例将发生跳转现象;尽管由于平台运动导致张力腿受力的随机性,但平台运动对张力腿涡激振动影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号