首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
深水管中管钢悬链线立管的非线性动力分析   总被引:1,自引:0,他引:1  
立管技术是深水资源开发的关键技术之一。管中管钢悬链线立管具有同心的外管与内管,其外管提供机械保护,内管提供油气通道,内、外管之间按照一定的距离安装扶正器以保护绝热材料,在深水油气开发中具有较大的应用价值。充分考虑在位立管承受的复杂载荷条件泡括动边界、波浪与海流载荷、立管自重、海水浮力、管内外静压力),以及整体和局部非线性因素(包括摩擦、滑移、接触、间隙等),采用时域有限元软件ABAQUS实现管中管钢悬链线立管的建模与非线性动力分析。  相似文献   

2.
王芳 《上海造船》2017,33(2):10-17
从水面钻井平台与水下立管联合作业的安全角度出发,提出一种将钻井立管的力学响应限制特性引入水面平台动力定位闭环控制中的位置保持方法,实现水面钻井平台(或船舶)基于立管角度响应的动态定位。利用有限元方法建立包括立管系统质量、系统刚度、结构阻尼和水动力载荷在内的立管运动控制模型。联合水面浮体和水下立管的低频运动特性建立水面浮体运动偏移与水下立管顶端角度及末端角度的相对运动关系模型。在此基础上,设计基于立管运行响应的动力定位控位方法,实现对立管顶端角度及末端角度的安全控制。仿真结果表明,所提出的方法可行,在外界突变的环境载荷瞬时作用于水面浮体时,能更快地跟踪新的期望最优位置,保证钻井立管运行在安全界限内。  相似文献   

3.
Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.  相似文献   

4.
In this paper a recently proposed formulation for the multilayered pipe beam element is extended to dynamic analysis of risers. Derivations of hydrostatic and hydrodynamic loadings due to internal and external fluid acting on each element layer are presented. Mass and damping matrices, associated to each element layer, are properly derived by adding their respective contributions to the expression of the virtual work due to external loading. The finite element implementation allows for the numerical representation of either bonded or unbonded multilayered risers, including small slip effects between layers. A number of numerical examples have been carried out and the results show the accuracy and efficiency of the new element formulation, even in large scale riser analysis. Moreover, we establish a few benchmarks using multilayered pipes and risers.  相似文献   

5.
One of the difficult operations, which consists in moving the riser and placing its end relatively close to a desired position, is the re-entry operation. Complex dynamic behavior of risers under different sea conditions requires efficient modelling methods. The model used in this paper applies a modification of the segment method using joint coordinates, in which it is possible to analyze only one selected deformation while neglecting the others. This enables a very high computational efficiency of the method to be achieved. The models developed take into account the impact of the environment in which the risers work. The model is validated by comparison of the authors' own results with those presented by other researchers and the simulations are concerned both with statics and dynamics of spatial risers. The numerical effectiveness of the method presented enables it to be applied in the solution of dynamic optimization problems, one of which is presented by the example of the re-entry process. The process of moving the riser is useful in emergency situations (evacuation) when it is necessary to disconnect the riser from the wellhead and move it together with the platform. This optimization task is a 3D problem due to the sea currents acting at different angles on the riser in relation to the direction defined by beginning and final positions of the bottom end of the riser. The calculations are carried out for a hang-off riser, and the optimal motion of the base for different conditions of the sea is defined. The influence of the LMRP (Lower Marine Riser Package) on this movement is also examined.  相似文献   

6.
With the rapid development of marine renewable energy technologies, the demand to mitigate the fluctuation of variable generators with energy storage technologies continues to increase. Offshore compressed air energy storage(OCAES) is a novel flexible-scale energy storage technology that is suitable for marine renewable energy storage in coastal cities, islands, offshore platforms, and offshore renewable energy farms. For deep-water applications, a marine riser is necessary for connecting floating platforms and subsea systems. Thus, the response characteristics of marine risers are of great importance for the stability and safety of the entire OCAES system. In this study, numerical models of two kinds of flexible risers, namely, catenary riser and lazy wave riser, are established in OrcaFlex software. The static and dynamic characteristics of the catenary and the lazy wave risers are analyzed under different environment conditions and internal pressure levels. A sensitivity analysis of the main parameters affecting the lazy wave riser is also conducted. Results show that the structure of the lazy wave riser is more complex than the catenary riser; nevertheless, the former presents better response performance.  相似文献   

7.
The flexible riser top connection to the floating unit is a critical region considering extreme loading and fatigue lifetime assessment and is generally protected by a bend stiffener to limit the curvature in this region. The top connection usually interface the floating unit with two main configurations: i) end-fitting and bend stiffener directly connected to a riser balcony or ii) riser connected to the floating unit in the end of an I-tube, which reduces the end-fitting bending loading, and bend stiffener assembled to a bellmouth with a given inclination in relation to the I-tube longitudinal axis. The traditional modeling approach considers the riser/bend stiffener system attached to the floating unit, representative of the first configuration. A more realistic modeling approach, capturing the complex interactions of flexible riser/bend stiffener with I-tube interface can be employed for preliminary assessment with less conservatism. In this work, a large deflection analytical beam model is developed for the riser top connection with I-tube considering the bellmouth transition region with a straight rigid surface followed by a curved section. The riser follows a nonlinear bending behavior described by a bilinear moment vs curvature function and the bend stiffener polyurethane material exhibits nonlinear elastic symmetric response represented by a power law function. It is assumed that there is no gap between the riser and the bend stiffener and the riser is fixed in the end-fitting position. The mathematical formulation of the statically indeterminate system results in three systems of coupled differential equations combined with the corresponding multipoint boundary conditions to be numerically solved by an iterative procedure. A case study is carried out with a 7” flexible riser protected by a bend stiffener connected to an inclined I-tube bellmouth. The system is subjected to extreme loading conditions and the influence of the sleeve shape and I-tube length on the riser curvature distribution, including the end-fitting position, and contact forces between the riser/sleeve and riser/bend stiffener sections are assessed.  相似文献   

8.
A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment–curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.  相似文献   

9.
Flexible risers have been widely utilized for the transfer of oil and gas products from a well to production units. The components of flexible risers, unlike steel risers, experience complex contact phenomena during bending. The contact between helical wires and adjacent layers especially causes a significant level of bending nonlinearity, making it hard to estimate the structural responses. Accordingly, a large-scale dynamic analysis of flexible risers usually involves an analytical model that predicts the bending moment and axial stress of helical wires based on theoretical approaches. The analytical model consists of an axis-symmetrical model and a bending model. Among them, the bending model plays a critical role in the prediction of the bending responses of flexible risers. The conventional bending models usually neglect the shear deformation of internal layers and continuity of sliding force, which leads to a significant error of analysis. Furthermore, the previous bending models assume that the contact pressure on helical wires is constant during bending. In real operating conditions, however, most flexible risers experience a considerable change of tension that governs the slip of helical wires. Hence, the current study presents a new dynamic analysis method for flexible risers. The suggested analytical model improves the bending model based on an accurate estimation of the internal strain field considering the shear deformation and continuous sliding force. Also, this study proposes a stiffness update method to reflect the effect of varying tension in the dynamic analysis. The presented method updates the bending property of flexible risers considering the continuous change of the contact pressure from varying tension. For the validation of suggested method, the current study carries out numerical simulations with a pure bending and varying tension for the internal diameter 7 inches flexible risers. It is identified that the suggested analytical model provides accurate analysis results. Moreover, it is found that the effect of varying tension gives a significant impact on the bending behavior of flexible risers by changing the slip condition of helical wires. Part I of this series of papers describes the detailed formulation method for the analytical model and with some verification examples. The suggested analytical model is expanded to the large-scale dynamic analysis in Part II for the investigation of the effect of shear deformation and varying tension.  相似文献   

10.
实际工程中深海立管常以管群的方式出现,当立管彼此相互靠近时,会发生流场干涉效应。为研究立管间相互干涉作用及螺旋侧板抑制双立管涡激振动的效果,本文基于Ansys Workbench平台,采用双向流固耦合技术对Re=7800均匀来流下长径比为482的串列双立管进行三维数值模拟。结果表明,立管轴间距为5D时立管间有完整的涡旋脱落,下游立管在上游立管的尾流诱导下产生振动,双立管横向振动锁定在二阶模态,且振动方向相反。附加螺旋侧板能有效削弱双立管振动频率,降低上游立管横向振动幅值,但下游立管两向位移响应变化不大。  相似文献   

11.
畅元江  陈国明 《船舶力学》2010,14(6):596-605
随着钻井作业向深水(500~1 500m)和超深水(1 500m以上)发展,在交变海洋环境载荷波浪力、海流力和浮式钻井平台运动的共同作用下,隔水管的动态响应更加显著.文中探讨了隔水管侧向振动的数学模型、动态特性分析中的结构与环境载荷建模技术及其非线性动力分析方法,研究并对比了不同分析方法在计算效率、计算精度和工程适用性等方面的差异.介绍了时域内应用ABAQUS软件进行超深水钻井隔水管非确定性动力分析的算法与详细流程,算例比较了不同边界条件对深水钻井隔水管动态特性的影响.研究表明,时域非确定性分析最为精确但需要时间最长,且只能采用线性AIRY波浪理论;理论上,海流主要引起隔水管动态响应的时不变部分,但该时不变部分不等同于海流引起的隔水管静态响应,一种简化方法只将海浪与钻井船运动作为动载荷而不考虑海流对动态响应的贡献;钻井船运动和波浪载荷是隔水管动态响应分析主要的动载荷,对于超深水隔水管来说,钻井船运动是首要的动载荷,其慢漂运动对隔水管性能有重要影响,而波浪仅对隔水管局部产生作用.  相似文献   

12.
由于浮式平台升沉运动的影响,导致立管在水平方向上发生参激振动。参激振动可以引起立管平衡位置的不稳定性,此外,参激振动与涡激振动联合作用会改变立管振动响应特性,加剧立管疲劳破坏。为对深海立管参激振动进行深入研究,通过总结国内外立管参激振动研究的主要成果,介绍了立管参激振动的主要特点和动力学模型,归纳了深海立管参激振动研究的主要方向,并就研究中较为薄弱的一些环节,提出了一些建议。  相似文献   

13.
The real-time monitoring of underwater risers, cables, and mooring lines by multiple sensors is in great demand but still very challenging. In this study, a new real-time riser monitoring method based on an Extended Kalman Filter (EKF) is proposed. It estimates the overall shape of riser in real-time utilizing the measured signals from multiple bi-axial (inclination and heading) inclinometers along the riser. The novel EKF algorithm is shown to be robust against sensor noises and successfully reproduces the actual riser profiles at each time step, which has been verified by multiple tests through numerical simulations. For verification, a turret-moored FPSO (Floating Production Storage and Offloading) with a SCR (Steel Catenary Riser) is employed in four different random waves and currents. Subsequent algorithms are also developed so that the corresponding bending and axial stresses along the riser can also be estimated in real time from the obtained riser shape, which can further be used for the real-time estimation of fatigue-damage accumulation.  相似文献   

14.
Traditionally, the design of mooring lines and risers of floating production systems (FPS) has been performed separately, by different teams, employing uncoupled analysis tools that do not consider the nonlinear interaction between the platform hull and the mooring lines and risers. Design processes have been focused on fulfilling the design criteria of the respective component (mooring/riser) alone, with few or no consideration to the other component, and little interaction between the design teams. Nowadays the importance of employing analysis tools based on coupled formulations is widely recognized, and analysis strategies have been proposed to consider feedback between mooring lines and risers within their respective design processes.In this context, this work details a proposal of one single and fully integrated design methodology for mooring systems and risers for deep-water FPS. In this methodology, the design stages of both risers and mooring lines are incorporated in a single spiral, allowing the full interaction of different teams; mooring design implicitly considers the riser integrity, and vice-versa, leading to gains in efficiency and cost reduction.Different analysis strategies are employed, taking advantage of uncoupled and coupled numerical models. The models generated at the initial/intermediate design stages can be reused in subsequent stages: simpler models are used in the initial stages, and more refined models are gradually introduced, to reach an ideal balance between computational cost and accuracy of results. In the advanced stages, the exchange of information between mooring/riser also allows the definition of criteria for the selection of governing/critical loading cases to be revised and verified in detail. This leads to the reduction of the original loading case matrix, allowing a feasible use of time-consuming fully coupled analysis.Results of a case study illustrating the application of some of the main processes of the methodology are included.  相似文献   

15.
周晓虹  卢晓平  郭宇 《船舶工程》2015,37(S1):256-260
海洋柔性立管因材料和结构上的复杂性在设计分析中存在许多技术难题。本文在变形能原理和能量守恒的基础上,推导出了柔性立管各层的刚度矩阵。将各层刚度矩阵进行叠加,得到柔性立管总体刚度矩阵,并用总体刚度矩阵求解静载荷作用下立管变形响应。同时基于ABAQUS软件建立八层非粘结柔性立管有限元模型,并将有限元计算结果和刚度矩阵计算结果进行比较。结果分析表明:运用推导得到的刚度矩阵求解静态载荷下立管的变形是一种简便且准确的方法。  相似文献   

16.
上层浮式平台的运动幅度比固定式平台大,对立管的影响更明显.为了解平台对顶张式立管动力的影响,提出一种动力分析方法.在一定的条件下建立立管的数学模型,采用软件Tube2D对平台和立管进行动力响应和弯曲应力分析,得到考虑平台作用的立管扶正器布置间距参数的敏感性和立管弯曲应力的变化.结果表明:对于考虑平台作用的立管模型而言,...  相似文献   

17.
This work describes an enhanced mooring optimization procedure, oriented towards recent floating production systems (FPS) for oil & gas exploitation in ultra-deep-water scenarios, which may present a large number of risers in an asymmetric layout. Acknowledging that the risers are the key component of an FPS, the optimization procedure is associated to an integrated mooring-riser design methodology; thus, instead of simply minimizing the platform offsets and/or the costs of the mooring system itself, one of the main objectives is to obtain a mooring configuration that ensures the integrity of the risers. Other highlights of the optimization procedure include the following aspects: Enhancements in the modeling of the optimization problem (including the definition of design variables, objective function and constraints that are relevant for such actual applications); The use of the PSO optimization algorithm associated to the ε-constrained method to efficiently handle the constraints; Enhancements in the evaluation of candidate solutions, by full nonlinear time-domain dynamic Finite Element simulations with coupled models; and the implementation in a parallel computing environment to deal with the high associated computational costs. A case study considering an FPS representative of actual applications in deepwater scenarios is presented to illustrate the practical application of the optimization tool.  相似文献   

18.
Internal solitary waves with a huge amount of energy easily trigger the large dynamic responses of riser-wellhead system and threaten its structural safety. However, previous studies have only focused on the dynamic response of the riser under internal solitary waves. The riser may experience excessive traction from the platform, especially from the mooring platform, in response to the arrival of internal solitary waves. The bottom of the riser connects to the wellhead system, which in turn exerts a reaction force on the riser. To address this problem, a coupled dynamic model of deep-water drilling mooring platform-riser-wellhead system under internal solitary waves is developed in this paper. A dynamic response analysis method based on the fourth-order Runge-Kutta method and finite element method is also proposed for the mooring platform-riser-wellhead system. A dynamical solver for the coupled system is then developed using MATLAB. The dynamic response characteristics of the riser-wellhead system under internal solitary waves are calculated. Results show that the displacement and bending moment of the system initially increases and then decreases along with the propagation of internal solitary waves, and finally reach equilibrium position. The displacement and bending moment reach their peak before the trough of internal solitary waves passes through the riser-wellhead system. The dynamic responses of the riser-wellhead system under the influence of internal solitary wave loads are much larger than those without the effect of internal solitary wave loads. The riser system experiences shearing loads at the interface of internal solitary waves, which trigger a step-like bending moment variation. The bending moment of the conductor under the mudline is greatly increased by the internal solitary waves.  相似文献   

19.
A mathematical model employed to analyze the global dynamics of a Steel Catenary Riser (SCR) taking into account the interaction with the seafloor and the effect of the soil reaction forces is established. The choice of soil model plays an important role for the dynamic behavior of SCRs. The riser has been modeled using flexible beam with large curvature and elastic foundation beam to describe the riser-soil interaction by means of realistic nonlinear load-deflection (Py) curves. The study is made to improve an existing finite element numerical code for dynamic analysis of mooring lines and risers, known as CABLE 3D, which is based on a slender rod assumption. Effects of nonlinear seabed model on the dynamic behavior of SCRs under vessel cyclic perturbation have further been investigated and discussed using a realistic Py curve to simulate soil deformation and resistance forces. The interaction model depends on several factors, such as soil strength, penetration depth and riser characteristics. The dynamic responses of the riser Touchdown Point (TDP) excited by vessel periodic heave motion are studied and the results are compared with those from the linear spring model. SCR has been perturbed by 10 regular sinusoidal cycles and the responses calculated by improved code show a number of features such as suction force mobilization, gradual increasing penetration depth, and gradual reduction of soil resistance at maximum penetration. The riser behavior at the touchdown zone (TDZ) depends on the riser top motion amplitude, nonlinear soil stiffness and suction force. The impact of the riser-soil interaction model on the dynamic behavior in the TDZ has been thoroughly studied in this paper.  相似文献   

20.
细长海洋立管涡激振动预报模型   总被引:7,自引:1,他引:6  
涡激振动预报对于深水环境中的细长海洋结构物的设计至关重要.近年来出现的若干经验模型基于圆柱体受追振荡实验数据.文中介绍了细长海洋结构物涡激振动预报工具的发展,进而提出了一种基于圆柱体受迫振荡实验数据的预报模型.与现有的类似模型相比较,该模型更加直接地利用了原始模型实验数据,并且将立管的有限元模态分析并入到响应预报当中,以计及立管物理参数的不均匀特性.利用近期立管模型在阶梯状分布流以及剪切流中的涡激振动响应实验测量数据,验证了该模型的有效性.该模型的计算结果表明,立管的模态振型、模态频率与涡激振动响应高度耦合,并且对于低质量比的情况尤为明显.文中还指出了类似的基于受迫振荡圆柱体实验数据的预报模型存在的缺陷.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号