首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对海上风机支撑结构进行动力响应分析,求出结构危险节点的载荷谱和功率谱密度函数,结合疲劳损伤模型和Dirlik概率模型,分别在时域和频域内对支撑结构进行疲劳寿命分析.由于时域法计算疲劳寿命需进行应力循环计数,这一过程需处理的数据庞大,耗时长.频域法省去应力循环计数,代之以概率密度函数,可相对准确、快速地计算结构的疲劳寿命.分析结果表明,采用Dirlik概率模型的频域分析法能较准确地反映海上风机支撑结构在随机载荷作用下的疲劳损伤情况,计算结果误差在可接受范围内.  相似文献   

2.
Loads from storm waves can in some cases be dimensioning for offshore wind turbine substructures. Accurate determination of nonlinear wave loads is therefore important for a safe, yet economic design. In this paper, the fully nonlinear waves, realized by a fully nonlinear potential wave solver OceanWave3D, are incorporated into coupled aero-servo-hydro-elastic simulations for a reduced set of wave-sensitive design load cases, in comparison with the widely used linear and constrained waves. The coupled aero-elastic simulations are performed for the DTU 10 MW reference wind turbine on a large monopile at 33 m water depth using the aero-elastic code HAWC2. Effect of the wave nonlinearity is investigated in terms of the ultimate sectional moments at tower bottom and monopile mudline. Higher ultimate moments, 5% at tower bottom and 13% at monopile mudline as maximum, are predicated when the nonlinear waves are used. It could be explained by the fact that the extreme nonlinear waves, that are close to the breaking limit, can induce resonant ringing-type responses, and hereby dominate the ultimate load responses. However, the constrained wave approach shows marginal difference compared to the standard linear wave approach. It can be concluded at least for the present configuration that the industry standard approaches (linear and constrained wave approach) underestimate the ultimate load responses on offshore wind turbines in severe sea states.  相似文献   

3.
This paper deals with the feasibility of using a 5 MW drivetrain which is designed for a land-based turbine, on floating wind turbines. Four types of floating support structures are investigated: spar, TLP and two semi-submersibles. The fatigue damage of mechanical components inside the gearbox and main bearings is compared for different environmental conditions, ranging from cut-in to cut-out wind speeds. For floating wind turbines, representative wave conditions are also considered. All wind turbines are ensured to follow similar power curves, but differences in the control system (integral to different concepts) are allowed. A de-coupled analysis approach is employed for the drivetrain response analysis. First, an aero-hydro-servo-elastic code is employed for the global analysis. Next, motions, moments and forces from the global analysis are applied on the gearbox multi body model and the loads on gears and bearings are obtained. The results suggest that the main bearings sustain more damage in floating wind turbines than on land-based. The highest main bearing damage is observed for the spar floating wind turbine. The large wave induced axial load on the main shaft is found to be the primary reason of this high damage in the spar wind turbine. Apart from the main bearings - which are located on the main shaft outside the gearbox - other bearings and gears inside the gearbox hold damages in floating wind turbines equal or even less than in the land-based turbine. It is emphasized that the results presented in this study are based on a drivetrain with two main bearings, which considerably reduces the non-torque loads on the gearbox.  相似文献   

4.
The very large mobile offshore structure (VLMOS) for wind power generation is one example of challenging future technologies to create a new backbone of energy resource of our country. The National Institute for Environmental Studies Japan has been studying this concept and found that increasing the capacity factor and reducing the weight of the structure are keys to make this concept successful. We investigated the navigation logic to improve the capacity factor and performed a fatigue assessment to ensure the structural safety of light weight design. Taking the knowledge on the seasonal weather condition in the Pacific Ocean into consideration, improved strategy of the VLMOS navigation for maximizing the generating power is proposed. Navigation simulations show that it is easy to achieve more than 40% capacity factor and to escape from high seas. Using wind and wave data obtained from the navigation simulations, an assessment of the fatigue damage has been performed. It is stated that the structure has enough fatigue strength for a 100 years of operation even if wind turbines get more than 40% of the capacity factor.  相似文献   

5.
本文主要研究在非线性混合海况(即风浪和涌浪组合海况)下,以NREL 5MW_Baseline Monopile近海风机为研究对象,对其塔筒底部(基线)所受到的剪力和弯矩载荷的动力响应进行仿真。在近海风机的时域仿真中,选用了Ochi-Hubble六参数波浪谱,并编制了该谱的程序嵌入到FAST中进行编译。计算过程中,共进行了20次10 min的仿真分析。对于得到的短期载荷,给出了波高程,塔筒底部首尾向剪力和弯矩在线性与非线性不规则波作用下的时程曲线对比图。采用分块最大值法对每一次的短期载荷提取极值,并基于20次仿真所得的极值,给出了塔筒底部首尾向剪力与弯矩在线性与非线性不规则波作用下的超越概率曲线对比图。研究表明,在非线性混合海况下进行近海风机塔筒底部载荷的动力响应研究,计算结果对工程实际应用具有指导意义。  相似文献   

6.
The dynamic characteristics of offshore wind turbines are heavily affected by environmental loads from wave and wind action and nonlinear soil behaviour. In the design of the monopile structures, the fatigue load due to wind and wave loading is one of the most important problems to consider. Since the fatigue damage is sensitive to the foundation stiffness and damping, increasing the accuracy of analysis tools used in the design and optimization process can improve the reliability of the structure and reduce conservatism, thereby leading to a more cost-efficient design. In this context, analysis of field data is important for calibrating and verifying purposes. This paper presents analysis of measured accelerations and strains from a wind farm in the North Sea with monopile foundations. Field data during idling conditions, collected over long periods of operation, are analysed and the natural frequencies are determined, and damping is estimated. The measured natural frequencies are compared to calculated values using an aero-servo-hydro-elastic code, showing a good agreement in the frequency range below 2 Hz. Variation of the natural frequencies with intensity of loading may indicate effect of soil nonlinearity on the overall OWT response. Since the first natural bending modes have the largest potential to mobilize soil reactions, they are of primary interest in this context. The effect of load (wave, wind and dynamic bending moment) on the first natural frequency is investigated using different analysis techniques in the frequency domain and time domain. A clear correlation between load level and first natural frequency is demonstrated. A simple nonlinear SSI model of the tower/soil system is employed to numerically investigate the observed changes in the measured first natural frequency with the level of loading and increased overall damping. The simulated results reproduce the general trends in the observed reduction in the first natural frequency and increased damping ratio with the load level. However, the effect of the load level is less than that observed in the measurements, indicating contribution also from other factors than soil nonlinearity.  相似文献   

7.
A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations.  相似文献   

8.
《Marine Structures》2002,15(3):233-250
Reliability-based design analysis of the fatigue life of the connectors of the five sections of the 2-km long US Mobile Offshore Base (MOB) is demonstrated. A performance function is defined in terms of the nominal stress range, inherent defect or starter crack, and appropriate material properties, which are considered random variables. The reliability analysis is performed for a sea state 1–8 (SS1–8) random loading having a Gumbel distribution. Where possible, uncertainty data for random variables are obtained from published data relating to the fatigue of metal and metal alloys. Otherwise, judgmental coefficients of variation are prescribed for purposes of demonstration. The fatigue life is assumed to follow the Weibull distribution. The reliability function is defined in terms of the mean life and the total uncertainty in the fatigue life. Preliminary reliability calculations suggest that current design stress levels be reduced to meet the current fatigue life target reliability level for the MOB connectors. An illustrative design is demonstrated and the metal selected for a fatigue design of the connectors for 10 million cycles with a reliability of 0.99 at a nominal stress of 203 MPa is HY-130 steel.  相似文献   

9.
A semi-empirical method for time domain simulation of vortex-induced vibrations (VIV) is used to calculate the in-line and cross-flow fatigue damage of a tensioned riser in uniform and sheared flow. Simulations are run for flow velocities ranging from 0.3 m/s to 2.4 m/s, and a detailed comparison with experimental observations is performed. Results are reported in terms of dominating frequency, mode of vibration and mean of r.m.s. of displacement, as well as fatigue damage distribution along the length of the structure and maximum fatigue damage rates for each case. Fatigue damage is calculated by rainflow counting of the strain time series together with an idealized S–N curve with slope m = 3. The results show that the model reproduces the measured fatigue damage with a satisfactory level of realism, using a consistent set of parameters. This indicates that the model is usable for calculation of riser VIV fatigue damage in various current conditions, assuming the Reynolds number is in the subcritical range.  相似文献   

10.
We present an optimization study for the conceptual design of wind turbine floaters of the TetraSpar type. The optimization variables include all geometric dimensions of the floater, keel, mooring lines and tower design. A gradient based optimization method is applied to a mass proportional objective cost function. The objective function accounts for the different weight components of the floater, including secondary steel, the wind turbine tower, and the mooring system. A frequency domain response method is utilized, so that each design evaluation also takes into account the dynamic response for 12 wind speeds with associated wave conditions. Nineteen constraints are applied for static and dynamic response, natural frequencies, and fatigue at the bottom of the tower. Two reference designs are presented, namely one with a soft–stiff tower and one with a stiff–stiff tower. Due to the anti-phase coupling of the floater pitch and tower vibration, the soft–stiff tower needs a stronger floater stiffness in pitch. This design thus has a larger water plane area moment than the more compact stiff–stiff floater, which is found to be the least economical. A constraint analysis is next presented based on Lagrange multipliers and a relative cost index. We find that the strongest cost influence is exerted by the 3P tower frequency constraint for the stiff-stiff and soft-stiff designs. Finally, a third design variant with a free optimizable tower frequency is introduced. This design is found to be 11% cheaper than the soft–stiff design and highlights the potential cost savings of tower designs within the 3P region.  相似文献   

11.
An innovative offshore system integrating a floating offshore wind turbine with a steel fish farming cage (FOWT-SFFC) has recently been developed by the two leading authors for offshore wind and aquaculture industry. The purpose of this paper is to investigate the dynamic responses of FOWT-SFFC subjected to simultaneous wind and wave actions in the harsh South China Sea environment by a series of model tests. The tests are conducted at the Tsinghua Ocean Engineering Basin with Froude scale of 1:30. In this paper, the similarity law and setup of model tests are given first. Then a series of calibration tests and identification tests are carried out to validate the capacity of wind generator and wave maker, and to identify the vibration frequencies of tower, the stiffness of mooring system, natural periods and system damping, motion response amplitude operators (RAOs) of FOWT-SFFC, and thrust-speed performance of the turbine in wave basin. After that, seakeeping tests are implemented for random waves, followed by a sequence of load cases including normal operating and extreme conditions. Constant wind speeds and random wind speeds are respectively considered in load combinations. The experimental results affirm the excellent seakeeping and dynamic performance of FOWT-SFFC. Existence of metal fish nets increases the damping of foundation's 6 degree-of-freedoms motions. Generally, the influence of nets on the dynamic responses is insignificant in wind sea states.  相似文献   

12.
Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface(AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes(RANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory(NREL) phase VI wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds(5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.  相似文献   

13.
The Powell's method was developed to determine the optimal stiffness and damping of multi-tuned mass dampers (MTMD) in offshore wind turbine (OWT) support structures under fatigue loads. Numerical examples indicated that the Powell's method results are always better than those using MTMD formulations. With the exception of the blade passing (3P) frequency, it was found in this work that a positive integer (n) multiple of the 3P frequency will also result in a large wind-induced vibration, which can be excited by the frequency of the first structural vertical rotation mode and will cause significant fatigue damage. The first translation mode TMD installed at the tower top is efficient to increase fatigue life at the tower and brace connections, but it cannot reduce fatigue damage at the column and brace connections below the platform. The second translation mode TMD can reduce fatigue damage resulting from large wave loads and thus increase the fatigue life of the braces and columns. The mode-3 TMD with a reduction in the 3(3P) vertical rotation can effectively increase the fatigue life of the braces and columns. Thus, the appropriate use of these TMDs can be effective for the fatigue problem of OWT support structures.  相似文献   

14.
Accurate fatigue assessment is a challenging and crucial aspect of riser design. The prediction of the long-term fatigue damage must account for numerous sea states of different wave heights, periods, and directions. Each sea state entails a dynamic analysis, often performed in the time domain owing to the significant nonlinearities. Because of the short-term uncertainties from irregular waves, the simulation duration must be sufficiently long for results to converge. To alleviate the hefty computational cost of long-term fatigue analysis, researchers have proposed efficient methods, but these are not without drawbacks; in particular, wave directionality is commonly neglected. This paper presents an efficient method for long-term fatigue analysis based on time domain simulation, considering wave directionality among other things. The proposed method is based on an enhanced version of control variates to reduce the variance in Monte Carlo simulations (MCS). The control function is constructed by training artificial neural network (ANN) models using existing MCS data. Here, a customized scheme is developed to allow for the situation that the training data and ANN prediction cases have different wave directions. The proposed method is unbiased and provides an error estimate. Simulations are performed on a floating system, and the proposed method is found to improve the efficiency of MCS significantly. Different scenarios such as fixed and random wave directions are compared, confirming that wave directionality is critical and should be included in a long-term fatigue assessment.  相似文献   

15.
The NW Mediterranean experiences, as illustrated by the last decade, strong and rapidly varying storms with severe waves and winds. This has motivated a continuous validation of models and the efforts to improve wave and wind predictions. In this paper we use two atmospherics models, MASS (from SMC-Meteorological Office of Catalunya) and ARPEGE (from Météo-France), to force two third generation wave models: WAM and SWAN. The evaluation and comparison has been carried out for two severe storms registered in November 2001 and March–April 2002.The ARPEGE and MASS models predicted higher 10 m wind speeds than coastal meteorological stations, a fact attributed to local land influences. Regarding the 10 m wind direction, models do not present large differences, although considerable deviations from recorded data were found during some dates. ARPEGE presents less scatter and lower errors than MASS when compared with QuikSCAT data.The 10m wind fields from both atmospheric models were used to force the two selected wave models and analyse the errors and sensitivities when predicting severe wave storms. The wave model simulations show some interesting results; during the storm, the spatial wave pattern using ARPEGE showed a higher maximum, although the values of significant wave height at the buoys were lower than the ones forced by MASS (with both WAM and SWAN). The SWAN simulations show a better agreement in predicting the growing and waning of the storm peaks. The prediction of mean period was improved when using the ARPEGE wind field. However the underestimation by SWAN due to the large energy at high frequencies was evident. Validation of spectral shape predictions showed that it still has considerable error when predicting the full frequency spectra. The storms showed bimodal spectral features which were not always reproduced by wave models and are likely to be responsible for part of the discrepancies.  相似文献   

16.
韩超帅  马永亮  曲先强  张猛 《船舶力学》2017,21(12):1527-1539
文章提出一种基于等效疲劳载荷的快速有效的结构优化设计方法,首先通过bladed模拟得到时域下的风载荷,然后通过雨流计数法则和等效损伤理论得到相应的疲劳载荷谱和等效疲劳载荷,接着以导管架式海上风机为例,利用AN-SYS对其进行三维建模,选取三种典型管节点和两种非管节点,基于热点应力法计算了其在三种风疲劳载荷作用下的疲劳损伤,通过比较三种载荷作用下的疲劳损伤结果,验证了等效疲劳载荷的可靠性.接着又计算了各等效疲劳载荷分量单独作用下的海上风机焊接节点的疲劳损伤,得出各疲劳载荷分量对疲劳总损伤的贡献,可以为设计者提供更好的载荷设计依据.相比于传统的时域疲劳分析方法和疲劳载荷谱方法,等效疲劳载荷方法更加方便有效.  相似文献   

17.
Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.  相似文献   

18.
Probabilistic fatigue analysis of offshore structures requires the numerical simulation of a huge number of loading cases to compute the long-term multi-dimensional integral associated to the fatigue damage assessment. This paper proposes the implementation of the univariate dimension-reduction method developed by Rahman and Xu [1] in order to compute the long-term fatigue damage more efficiently. This method is particularly attractive because it reduces significantly the number of simulations by decomposing the N-dimensional integral associated to expected long-term fatigue damage assessment into the sum of N one-dimensional integrals. In addition, this paper compares the univariate-dimension reduction method with the brute force direct integration methodology and other methods based on Taylor expansions, such as perturbation approach and asymptotic expansion method discussed by Low and Cheung [2]. Two comprehensive examples are included to show the effectiveness of the method. At first, the performance of the univariate dimension-reduction method is evaluated by assessing the fatigue damage of a theoretical structure represented by a single stress response amplitude operator (RAO). Then, in order to show a case of practical application, the fatigue damage is evaluated for a Steel Lazy Wave Riser (SLWR) connected to an FPSO in a water depth of 2200 m.  相似文献   

19.
渤海某FPSO的单点系泊装置固定塔架由导管架、将军柱和上部组块构成,其中将军柱是系泊力的主要承受构件之一,其结构安全至关重要。由于系泊力是典型的交变载荷,作用在结构上会产生疲劳损伤,因此有必要对将军柱进行在位期间的疲劳分析。本文提出一种长期海况下海上固定装置疲劳计算方法,通过AQWA软件建立单点系泊系统的多体耦合水动力模型模型,根据渤海的海况环境资料计算出FPSO运动时域内所受到的的系泊力;基于S-N曲线方法与Miner线性累计损伤理论,通过nCode Designlife疲劳计算软件计算将军柱结构的疲劳寿命和管节点的疲劳损伤;评估结构的疲劳强度,分析易发生疲劳的关键节点位置,并给出增加管节点疲劳寿命的建议及设计方法,为相同类型的海上固定式结构物的结构设计及疲劳分析提供有益的参考及借鉴。  相似文献   

20.
船体固有频率与遭遇波浪频率及其倍频相接近时,波浪载荷极易引起船体结构产生持续的波激振动现象,对大型船舶结构疲劳损伤的影响达到40 %以上。因此,有必要针对波激振动引起的非线性垂向弯矩载荷特点,开展高低频复合工况下典型切口试件疲劳试验及累计损伤分析研究。基于非线性随机载荷的分析方法,采用闭合雨流计数法提取叠加应力历程中的多级循环载荷,并结合平均应力修正方法和疲劳极限以下SN曲线局部修正法,对叠加应力历程中小载荷的损伤效应展开研究。分析结果表明,高低频载荷叠加产生的附加损伤效应对疲劳寿命的影响显著,在恒定应力比下随平均应力的变化近似成二次函数关系。考虑高频小载荷的叠加应力历程疲劳寿命明显降低,可以通过修正累计损伤临界值或引入应力放大因子,近似的利用线性累积损伤理论预测实际叠加应力历程的寿命范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号