首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
An investigation is carried out in this paper for the predictions of structural performance of double-bottom tankers during ship grounding over the “shoal” type seabed obstacles. Hong and Amdahl developed a simplified analytical model for the unstiffened double bottom. This method is carefully studied, verified and then used as the first stage of our prediction. The second stage is concerned with stiffeners since stiffeners are indispensable components for double-bottom tankers. A prevailing way to handle is to smear stiffeners onto their attached plating known as the smeared thickness method. However, the effective ratio in this method is dubious in such shoal grounding accidents. Proper values of this parameter are determined in stage two, and then together with the method in stage one, constitute a reliable and efficient tool for structural performance predictions of double-bottom structures in shoal grounding accidents.A double-bottom tanker is chosen as object for the case study. Finite element models of the hold both stiffened and unstiffened are created for numerical simulations using the LS_DYNA software. Simulation cases cover a wide range of slope angles of the indenter and indentations. Numerical results show that Hong and Amdahl's model in stage one is capable of predicting energy dissipation with high precision but poor accuracy for grounding resistances, and a possible reason may be the neglect of vertical resistance. The updated smeared method proposed in stage two is also proved to be capable of grasping major characteristics of stiffeners. Results and conclusions drawn from this paper can be conveniently applied for assessments of the performance of ship double-bottom structures during shoal sliding grounding scenarios, and will benefit the application of accidental limit state design concept in the ship design stage.  相似文献   

2.
船舶双层底结构与台形礁石碰撞能量及搁浅阻力分析   总被引:1,自引:1,他引:0  
提出一套基于双层底油轮搁浅于台型礁石场景下的结构损伤变形非线性机理模型和解析计算方法,并通过数值仿真计算验证该机理模型和解析方法的准确性。在整合双层底板材变形解析计算模型和加强筋变形解析计算模型的基础上,提出的结构变形机理模型能够同时考虑船底板材和加强筋的变形模态。以双层底油轮的一个舱段作为研究对象,使用数值仿真软件LS_DYNA在较大的撞深和礁石倾角变化范围内进行仿真计算,并进行比较。研究结果表明该解析计算模型的总变形能和平均水平搁浅阻力与数值结果吻合得较好,从而验证了机理模型和解析计算方法的可靠性。研究成果可以方便地应用到双层底船舶搁浅场景的结构性能快速预报,以及船舶耐撞性能结构设计中。  相似文献   

3.
随着航运业的快速发展,海上航行的船舶越来越多.尽管人们做了许多努力避免海上意外事故的发生,但海难事故依然不可避免.为了降低上述事故造成的损失,需要在设计阶段快速并准确地预报船舶的结构耐撞性.本文以强桁材结构为研究对象,通过开展准静态冲压试验及相应的数值仿真,分析强桁材结构在面内冲压载荷作用下的变形机理,并基于试验与仿真所得到的结构变形特点,提出强桁材面内受压时的变形模式.以此为基础,运用塑性力学理论,推导出结构变形能、瞬时结构变形抗力及平均结构变形抗力的解析预报公式,并将计算结果与试验结果进行比较验证.研究得到的结构面内受压变形能和抗力解析计算公式,可以快速评估事故载荷下结构的响应情况,包括结构变形阻力及能量耗散,具有使用方便,计算速度快,计算结果相对可靠的优点,对船体耐撞结构设计及抗撞性能评估具有一定的指导意义.  相似文献   

4.
This paper presents a set of analytical expressions for the calculation of damage opening sizes in tanker groundings. The simplified formulas were given for the grounding force, longitudinal structural damage and the opening width in the inner and outer plating of a tanker's double bottom. The simplified formulas derived are based on a set of numerical simulations conducted with tankers of different dimensions- 120, 190 and 260 m in length. The simulations were performed for five penetration depths and for several rock/ground topologies.The formula for the horizontal grounding force was derived provided the grounding force is proportional to the contact area and the contact pressure. By use of regression analysis it was shown that the contact pressure for any combination of ship and rock size can be expressed with a single normalized polynomial. The actual contact pressure was found by scaling the normalized pressure with the structural resistance coefficient. Given the formulation for the normalized contact pressure, the actual contact force for a ship can be found as a product of average contact pressure and the contact area.The longitudinal length of the damage was evaluated based on the average contact force and the kinetic energy of the ship. The damage opening widths in the outer and inner bottom of the ship were derived separately for two ranges of relative rock sizes as they have strong influence on the deformation mode. The damage widths were given as a function of rock size, penetration depth and double bottom height. To improve the prediction of the onset of the inner bottom failure, a critical relative penetration depth as a function of the ratio of the rock size and the ship breadth was established.Comparison to the numerical simulations showed that the derived simplified approach describes the horizontal grounding force and the damage length well for the penetration depths above 0.5 m. For the range of specified relative rock sizes, the damage width in the inner and outer bottom deviates from numerical simulations approximately up to 25%, which was considered sufficient for the analyses where rapid damage assessment is needed. Comparison was also made to real accidental damage data and to the results of several simplified formulas.  相似文献   

5.
In this paper, a verification is presented of a simplified analytical method for the predictions from numerical simulations of structural performance during ship groundings over seabed obstacles with large contact surfaces and trapezoidal cross-section. This simplified analytical method was developed by Lin Hong and Jørgen Amdahl and calculates grounding characteristics, such as resistance and distortion energy, for double-bottomed ships in shoal grounding accidents. Two finite-element models are presented. One was built for a hold, and the other was built for a hold and a ship hull girder and also considers sectional properties, ship mass, added mass and the hydrodynamic restoring force. The verification was completed by comparing horizontal and vertical resistances and the distortion energy between seven numerical-simulation cases and a set of corresponding cases computed by a simplified analytical method. The results show that the resistances obtained by the simplified analytical method are close to the mean values of the resistance curves obtained by numerical simulations. The comparisons prove that the energy dissipation-prediction capability of the simplified analytical method is valuable. Thus, the simplified analytical method is feasible for assessing ship groundings over seabed obstacles with large contact surfaces and trapezoidal cross-section. Furthermore, studies of the influence of ship motion during groundings ascertained that ship motion affects structural performance characteristics. Resistances are lessened at the end of the grounding due to the reduction of indentations caused by heave and pitch motions of the ship hull girder. Finally, a new method for predicting the structural performance of the time-consuming complete-ship model by applying a combination of normal numerical simulations and ship-motion calculations is proposed and proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号