首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为降低燃机箱体内部温度,保护线缆等设备,采用数值模拟方法研究船用燃气轮机排气结构几何变化对箱体内部流场的影响,研究表明,排气结构几何参数的优化能够使箱体内冷却气流量提高42.3%,使流场平均温度降低8.5 K,并能够有效调整箱体内温度场分布,进而保护箱内设备,研究结果可为燃机箱体几何设计提供理论指导。  相似文献   

2.
船用燃气轮机排气红外抑制装置的流动分析   总被引:1,自引:0,他引:1  
本文在分析船用燃气轮机排气系统红外抑制装置结构特点的基础上,从数值计算和实验测量两方面分析了该装置结构参数对气流流场的影响,以及温度场的分布规律,得到了若干结论,为工程设计和分析排气系统红外抑制装置提供了理论依据,具有一定的实用价值。  相似文献   

3.
在燃气轮机装置的流路中有许多管路,当燃气流过这些管道时将产生流体阻力损失,从而影响装置的性能。在变工况工作时,由于流路中的流量、温度、压力及流速的变化,流阻损失也将发生变化,流阻损失表现为进、排气总压损失。此外随着燃气轮机在舰船上使用时间的增长,空气中盐分对燃气轮机的进气滤清装置产生腐蚀、结垢等因素会造成进、排气压力的损失。本文将对进、排气道的压力损失对燃气轮机整体性能影响进行研究。  相似文献   

4.
This paper proposes a semi-empirical model to predict a ship's speed loss at arbitrary wave heading.In the model,the formulas that estimate a ship's added resistance due to waves attacking from different heading angles have been further developed.A correction factor is proposed to consider the nonlinear effect due to large waves in power estimation.The formulas are developed and verified by model tests of 5 ships in regular waves with various heading angles.The full-scale measurements from three different types of ships,i.e.,a PCTC,a container ship,and a chemical tanker,are used to validate the proposed model for speed loss prediction in irregular waves.The effect of the improved model for speed loss prediction on a ship's voyage optimization is also investigated.The results indicate that a ship's voyage optimization solutions can be significantly affected by the prediction accuracy of speed loss caused by waves.  相似文献   

5.
The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases(GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.  相似文献   

6.
进排气道全压损失对舰船燃气轮机性能影响的修正计算   总被引:2,自引:0,他引:2  
舰船燃气轮机的额定功率及燃油消耗率等性能指标通常是在无进排气全压损失或在给定的全压损失下给出的。在实际使用中,当进排气道的全压损失与给定值不同时,燃气轮机的性能将发生变化,这常常是不可忽视的。如英国苔茵 RMIA 燃气轮机进气阻力增加1%时,功率下降2%,油耗增加1%.在诜择燃气轮机、鉴定机组性能、设计讲排每装置及研究 COGAS 装置时,都  相似文献   

7.
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients(APGs) is conducted by using Reynolds-averaged Navier-Stokes(RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox(2006) k-ω are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.  相似文献   

8.
等压排气是一种可有效改善航行体绕流流场特性、抑制纵向偏转的流动控制技术。文章数值模拟了带等压排气的航行体水下垂直运动过程,给出了不同排气角度时的排气流量及速度、气膜长度等参数变化规律,分析了排气角度对等压气膜非定常发展过程及航行体绕流流场特性的影响,建立了排气孔附近及其下游流场、气膜尾部回射流场的拓扑结构,探讨了等压气膜的形态特征、演化规律及其降低航行体表面压力的机制,研究结果有助于深入理解等压排气技术改善航行体流体动力学特性的物理本质。  相似文献   

9.
文章采用不同的算法对中低雷诺数方腔驱动流动进行了直接数值模拟,所用算法分别是人工压缩方法、SIMPLE算法以及PISO算法。三种算法均采用有限体积法基于交错网格技术离散N-S方程,时间项采用全隐格式离散,对流项采用QUICK格式离散,并将它们得到结果与Ghia发表的基准解进行了比对。文中分析了在同样的收敛条件下,不同算法之间的稳定性,收敛速率以及准确性的差异,发现PISO算法在较低雷诺数Re=400和Re=1 000情况下最准确,而人工压缩算法在雷诺数为5 000时最准确,在所有计算的不同Re数条件下,发现人工压缩法达到收敛所需时间都是最少的,这可以使它成为中低雷诺数下研究直接数值模拟最好的算法之一。  相似文献   

10.
In the shipbuilding industry, market competition is currently operating in an intense state. To be able to strive in the global market, the shipbuilders must able to produce ships that are more efficient and can be constructed in a relatively short amount of time. The piping layouts in the engine room requires a lot of time for the designer to design the best possible route and in a way are not the most efficient route. This paper presents an automatic piping support system in the ship’s engine ...  相似文献   

11.
In power production, gas turbines are commonly used components that generate high amount of energy depending on size and weight. They function as integral parts of helicopters, aircrafts, trains, ships, electrical generators, and tanks. Notably, many researchers are focusing on the design, operation, and maintenance of gas turbines. The focal point of this paper is a DEMATEL approach based on fuzzy sets, with the attempt to use these fuzzy sets explicitly. Using this approach, the cause–effect diagram of gas turbine failures expressed in the literature is generated and aimed to create a perspective for operators. The results of the study show that, connecting shaft has been broken between turbine and gear box selected the most important cause factor andsufficient pressure fuel does not come for fuel pump is selected the most important effect factor, according to the experts.  相似文献   

12.
In the present study, a new approach is applied to the cavity prediction for two-dimensional(2D) hydrofoils by the potential based boundary element method(BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code(FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.  相似文献   

13.
Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules. Because the health parameters are unmeasurable, researchers estimate them only based on the available measurement parameters. Kalman filter-based approaches are the most commonly used estimation approaches; however, the conventional Kalman filter-based approaches have a poor robustness to the model uncertainty, and their ability to track the mutation condition is influenced by historical data. Therefore, in this paper, an improved Kalman filter-based algorithm called the strong tracking extended Kalman filter(STEKF) approach is proposed to estimate the gas turbine health parameters. The analytical expressions of Jacobian matrixes are deduced by non-equilibrium point analytical linearization to address the problem of the conventional approaches. The proposed approach was used to estimate the health parameters of a two-shaft marine gas turbine engine in the simulation environment and was compared with the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). The results show that the STEKF approach not only has a computation cost similar to that of the EKF approach but also outperforms the EKF approach when the health parameters change abruptly and the noise mean value is not zero.  相似文献   

14.
通过燃气轮机排气温度对燃烧室及涡轮前几级叶片等高温部件开展异常检测,早期可靠的检测异常对确保燃气轮机高效运行至关重要。随着机器学习的广泛应用,数据驱动的状态监测方法已经越来越流行。针对故障数据缺失场景下的的燃气轮机排气温度分布异常检测问题,使用深度自编码器(Deep Autoencoder,DAE)学习特征,并采用隔离森林(isolated Forset,iForset)学习特征数据的正常信息,从而实现异常检测。与其他单分类的异常检测方法对比,该方法具有最佳的检测性能指标,能实现有效灵敏的燃气轮机排气温度异常检测。  相似文献   

15.
This paper presents a new type of double-helical rotor wave energy converter(WEC), which consists of two isolated sets of helical rotor structures(inner and outer). This device can generate electricity by using the rising and falling energy of a wave. The rotors are simulated and optimized by Fluent. Each rotor’s blades are simulated and analyzed, which are separately changed in terms of helix angle, shape, and thickness. The simulation result shows that, for both inner and outer helical rotors,...  相似文献   

16.
本文利用OpenFOAM程序基于物理水槽结构设计建立了波浪-水流水槽模型。由于造流出口位于造波推板正前方的水槽底部,在造流出口的下游存在一个波浪-水流相互作用的整流区间,直到波浪-水流场趋于稳定。本文的主要目的是研究各主要影响参数对于整流区间长度的影响,通过结构参数的优化获得最小整流区间长度,以使有效试验段达到最大化。计算分析了波浪-水流场在水槽中各个位置处的时间平均水平速度的垂向分布,并将平均速度与试验段稳定值的偏差为10%的位置点作为整流区间与试验段的分界点。基于数值模拟结果,确定了最优的水流出口角度、水流出口宽度及其与造波推板的距离,同时研究了工作水深、波浪周期和波高以及水流速度对于整流区间长度的影响。  相似文献   

17.
Environmental effects have an important influence on Offshore Wind Turbine(OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element(BEM)—pan MARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations(Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.  相似文献   

18.
A dual-baffled rectangular tank with different configurations is proposed to reduce the sloshing effect, and design optimization is conducted through numerical simulations with open-source software, namely Open FOAM, based on the computational fluid dynamic model. A series of physical experiments in the dual-baffled rectangular tank is performed for model validation and design optimization with the measured water surface elevation distributions along the tank. The optimization uses the calculate...  相似文献   

19.
Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm's length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.  相似文献   

20.
Complex flow around floating structures is a highly nonlinear problem, and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows. With the improvement of high-performance computing and the development of numerical techniques, computational fluid dynamics(CFD) has become increasingly powerful in predicting the complex viscous flow around floating structures. This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows, breaking bow waves of high-speed ship, ship hull–propeller–rudder interaction, vortexinduced vibration of risers, vortex-induced motions of deep-draft platforms, and floating offshore wind turbines are discussed.Typical techniques, including volume of fluid for sharp interface, dynamic overset grid, detached eddy simulation, and fluid–structure coupling, are reviewed along with their applications. Some novel techniques, such as high-efficiency Cartesian grid method and GPU acceleration technique, are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号