首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着城市建设以及轨道交通建设的飞速发展,地铁盾构将不可避免的下穿现有的各种构造物,如何确保构造物的安全是不容忽视的问题。文中以某地铁盾构区间下穿现有高速公路桩基工程为依托,采用有限差分数值分析软件FLAC3D建立三维模型,通过模拟高速公路桥梁桩基托换与地铁盾构隧道开挖的全过程,分析了桥梁桩基的受力与变形、盾构隧道掘进过程中的管片受力与变形等,进而进行安全性分析,并对施工方案提出优化建议,为其他类似工程提供参考。  相似文献   

2.
新建隧道穿越既有建筑施工已成为城市地铁工程建设中的一种常见情况,由于既有结构沉降控制要求严格,如何有效控制既有建筑物的变形已成为目前研究的热点问题,以深圳地铁9号线车公庙站—香梅站盾构区间下穿一高档装修家私城为例,介绍了下穿段盾构掘进控制技术、既有结构监测施工技术,通过对既有结构变形监测可知,在未对既有结构进行预加固的情况下,采用上述技术措施能有效控制既有结构的变形,确保了盾构施工安全和既有建筑的安全。  相似文献   

3.
为研究盾构下穿既有盾构隧道时施工参数的合理取值,以北京南水北调东干渠工程盾构隧道穿越既有地铁盾构隧道施工为依托,通过对既有隧道沉降的数值模拟和现场监测数据、盾构施工参数的分析,讨论了既有左右线隧道沉降存在差异的原因,总结了控制沉降的施工参数经验,阐述了既有隧道受穿越施工扰动的沉降规律,提出并验证了盾构隧道病害整治的方法.研究结果表明:受盾构施工参数的影响,既有左线隧道沉降23.9 mm,而右线仅沉降4.8 mm,沉降差异明显,但规律基本一致;盾构施工时,土仓压力调整级差不宜大于0.005 MPa,严格控制同步注浆压力在0.50 MPa,二次补浆压力在0.20~0.35 MPa,曲线段适当减缓掘进速度;已投入运营的地铁维修作业时间短,宜通过化学注浆治理管片接缝和螺栓孔处的渗漏水,压力注胶充填树脂治理道床裂缝.   相似文献   

4.
为研究近接重叠下穿既有隧道的盾构施工对地表和既有隧道的影响,以长沙地铁3号线下穿地铁1号线的盾构隧道工程为依托,采用Midas/GTS NX软件建立三维模型,考虑土仓压力、注浆压力、注浆量和掘进速度影响下,探究新建隧道施工对地表沉降和既有隧道位移的影响。研究结果表明:土仓压力增大会减少地表沉降量,且掌子面前、后各3.5倍隧道洞径区间内完成了90%的竖向变形;增大注浆压力和注浆量均可减少既有隧道的竖向位移,但注浆量对既有隧道竖向变形的控制作用较注浆压力的大,当研究区间的注浆压力和注浆量分别提高了1.5倍、0.6倍时,既有隧道竖向变形分别降低了0.5、0.9 mm;盾构掘进速度增大,地层所受扰动增大,地表最大沉降量和既有隧道最大竖向位移也增大。研究成果可为类似工程施工提供技术指导。  相似文献   

5.
确保临近既有建筑物安全是新建隧道施工的关键问题之一.针对广州地铁十八号线琶洲西区站—冼村站区间双线盾构隧道下穿既有博物馆建筑的情况,基于合理假定条件,采用数值分析方法模拟计算了新建隧道施工过程中盾构掘进对邻近建筑物桩基的影响.数值分析结果表明:随着盾构掘进,桩顶竖向位移的变化表现为先缓后急再缓,当桩基正下方的管片进行拼...  相似文献   

6.
针对深圳地铁7号线某区间盾构隧道下穿既有地铁1号线区间实际工程,采用MidasGTS软件建立了盾构施工的物理力学模型,模拟了盾构隧道穿越既有线施工过程,预测分析了盾构施工对既有盾构区间的影响。计算结果表明,在对隧道间土体进行洞内注浆加固的条件下,盾构区间施工对既有地铁线沉降变形存在一定影响,但影响程度较小,可以满足既有线运营要求。  相似文献   

7.
以南京地铁玄武门—新模范马路区间隧道盾构施工工程为背景,使用FLAC3D软件在考虑盾构隧道施工中的开挖、排土、衬砌等步序的前提下,进行盾构隧道掘进施工对地层变形影响的三维数值模拟.结果表明,在盾构掘进施工过程中,地层沉降具有明显的时间效应;地表沉降量随之逐渐增大;地层横向沉降变形随着地层埋深的增加,最大沉降值逐渐增大,沉降槽宽度逐渐减小;地层沉降历时曲线呈现出反"S"形.  相似文献   

8.
以成都轨道交通6号线玉双路站—牛王庙站区间双线隧道近距离下穿运营2号线,同时进行盾构接收施工工程为背景,阐述盾构下穿前、中、后以及接收施工阶段的大管棚支护、多重注浆、刀具调整、掘进参数设定、自动化监测以及快速接收、洞门封闭处理等关键施工技术.在成都卵石和泥岩复合地层中盾构施工时,通过采取大管棚预加固、自动化监测等技术措...  相似文献   

9.
青岛地铁2号线要下穿正在施工的地铁3号线隧道区间,两条线二衬最近相距0.8m左右。在施工过程中,对地铁3号线采用涨壳式预应力锚杆加固、注浆堵水等措施,对地铁2号线掘进采用超前管棚注浆支护、减震及微爆破的施工技术,成功的实现了下穿。工程监测表明,隧道区间未见裂缝与漏水,沉降及振速均满足要求,证明所采取的措施有效。  相似文献   

10.
依托北京某地铁区间上下叠交隧道的特殊工况,从基坑降水技术、地层加固措施、掘进参数设置以及掘进技术控制四方面详细论述了此类复杂工程的施工关键技术。通过对掘进过程中地表沉降以及下行隧道结构的变形分析可知,所提出的盾构掘进方案有效地控制了上部隧道施工对下部隧道以及对既有构建物的影响,同时也为相关类似工程的建设提供了技术支持。  相似文献   

11.
以富水砂层地区南昌地铁盾构隧道下穿南昌火车站场为工程背景,利用Plaxis 3D建立基于小应变土体硬化刚度本构(HSS)的动态掘进模型,研究有无桩筏加固方案对盾构隧道下穿火车站场的影响。结果表明:盾构隧道在无保护措施下穿股道时,股道纵向沉降超过黄色预警值4.0 mm要求,最大值为5.2 mm,采取桩筏加固方案后纵向沉降最大值减小至1.4 mm,因此采用桩筏加固方案可有效确保股道行车安全。  相似文献   

12.
以国内某盾构隧道下穿既有构筑物为工程依托,运用有限元分析软件Plaxis模拟盾构隧道开挖的全过程.对施工所引起的沉降进行数值模拟分析。研究结果表明:隧道下穿住宅楼时,桩基础会产生较大的不均匀沉降;隧道下穿锅炉房时,左右线开挖后引起的基础沉降都超出了可控范围;隧道在先后下穿住宅楼和锅炉房的施工过程中都存在较大风险。通过研究提出了盾构施工期间技术措施,有效地控制构筑物沉降,以达到相关安全性要求。  相似文献   

13.
成都地铁4号线二期工程万年场站~东三环站区间为双线盾构隧道,区间盾构隧道下穿包括无砟轨道、有砟轨道及桩基础形式铁路桥的铁路群。以数值模拟为手段,采用Flac3D软件,建立盾构下穿铁路桥的三维有限差分模型,对盾构掘进中造成的地表沉降、周围土体变形及铁路桥墩的沉降变化进行了分析,评价了上部铁路桥的安全性,并提出了相应的安全控制措施。基于土体加固措施,对加固与不加固工况进行了对比分析。结果表明:铁路桥与盾构隧道间土体加固后,桩基最大水平位移和竖向沉降分别减少了58%和79%,桥墩沉降满足安全控制标准,盾构施工对铁路桥运营的影响在安全范围内。  相似文献   

14.
文中借助于某市地铁线路一区间隧道下穿该市火车站国铁站场的工程实例,剖析了盾构法施工造成地面沉降的主要原因,以及盾构隧道下穿国铁线路股道可能出现的风险因素及影响,提出了相应的防护措施.通过工程实例提出了隧道下穿铁路股道的控制标准,并证明了盾构法施工对于控制地面沉降的突出作用.  相似文献   

15.
大直径盾构隧道下穿高层建筑物是城市市政工程中经常遇到的施工状况,在盾构掘进过程中隧道周边土层会发生一定的变形,从而威胁到建筑物的结构安全稳定,对此类工程施工过程进行风险分析和结构变形计算是十分必要的。以此类工程施工为研究背景,采用数值模拟和原位监测的手段,发现大直径盾构掘进过程和掘进后对高层建筑沉降影响较大,并且盾构下穿过程对地下室底板和独立式桩基变形也有显著影响;采用洞内同步注浆有利于减少建筑物沉降。大直径盾构隧道下穿过程中应明确施工风险,严格控制掘进参数,制定有效沉降控制措施是降低施工风险的有效手段。  相似文献   

16.
以杭州地铁 9 号线一期工程下穿沪杭铁路框架桥为背景, 建立盾构下穿施工三维数值模型, 分析软弱地层环境下地铁盾构隧道下穿施工对铁路框架桥的影响, 提出多种确保铁路安全运营应对措施, 并在施工过程中进行现场监测。 数值分析表明, 盾构隧道下穿施工中铁路框架桥最大沉降量为 6. 72mm, 进行洞内注浆加固后, 最大沉降量降为 4. 76mm, 说明在软弱地层环境下及时进行洞内注浆对抑制铁路框架桥的沉降变形具有显著效果; 监测结果表明, 盾构右线施工对框架桥沉降变形的影响大于左线, 铁路框架桥最大沉降达到 6. 9mm, 采取应对措施及时进行洞内二次注浆, 可有效控制框架桥的持续沉降变形, 铁路框架桥处于安全可控状态。  相似文献   

17.
以某区间盾构隧道下穿高架桩基为工程背景,本项目条件复杂,施工变形控制严格,对此类复杂环境下地铁盾构隧道下穿高架桥桩基的托换施工技术进行分析,突破托换过程中结构止水性能、稳定性及刀盘刀具改造等技术难点,同时采用平面应变的计算模式对托换桩的施工过程进行模拟。结果表明:桥墩、托桩最大沉降量均在预警范围内。通过研究分析施工方案技术可行、水平较高,可为类似工程提供一定的工程借鉴和参考。  相似文献   

18.
高大  李云龙  王刚 《北方交通》2022,(2):77-79,84
盾构隧道下穿有轨电车路基时,会对周围土层造成扰动并造成路基沉降.路基沉降可能会给有轨电车运营安全带来较大影响.为研究盾构隧道下穿有轨电车路基过程中路基的沉降变化规律,以沈阳地铁4号线沈创区间为例,采用Midas-GTS-NX有限元软件对盾构隧道下穿有轨电车路基施工过程进行三维数值模拟,研究结果表明:本工程最大沉降量约为1.4mm,小于有轨电车路基沉降控制值10mm,无需采取其他处理措施即可满足变形控制要求;左右线盾构隧道同时开挖时,路基沉降量最大.在实际工程中,盾构隧道下穿重要构筑物时应尽量避免同时施工;左右线盾构隧道前后错开一定距离后施工可减少路基沉降,也可缩短工期.  相似文献   

19.
新建北京某地铁盾构隧道下穿既有国家一级铁路干线,为此对盾构下穿铁路过程进行分析,预测施工引起的既有铁路路基扰动、轨道结构变形,在此基础上评价既有铁路结构是否安全,轨道是否满足运营要求。  相似文献   

20.
西安地铁盾构施工对古城墙影响   总被引:2,自引:0,他引:2  
针对西安地铁2号线盾构施工下穿古城墙问题,在考虑城墙损伤的前提下,采用三维弹塑性有限差分法FLAC 3D软件模拟了不同加固措施工况下盾构施工对西安城墙北门的影响,得出了盾构掘进过程中城墙的沉降规律,并对该规律进行了分析.研究结果表明,采取钻孔灌注桩及化学注浆复合加固措施可以有效地保证城墙安全,为西安地铁2号线的施工及保护古城墙提供了指导性的建议,并为日后有关黄土地区的盾构施工提供了参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号