首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Objectives]It is easy to produce buckling distortion when welding thin plate butt joints, which affects the construction period, cost and performance, but this can be controlled by applying external restraints. [Methods ] First, a butt welding test of a thin plate under external restraints is carried out, and the out-of-plane deformation is measured by the optical surface scanning method. At the same time, finite element (FE) models in a free state and external restraint state are established, and the thermal mechanical phenomena of the two models are subjected to thermal-elastic-plastic FE analysis (TEP FE). The influence of different external restraint distributions on the welding buckling distortion of the joints is then studied, and reasons for controlling welding buckling distortion are analyzed from the perspective of longitudinal plastic strain and longitudinal contraction force.[Results ] The out-of-plane deformation of the corresponding model is in good agreement with the measured results, and milder than the out-of-plane deformation of the model in a free state. When external restraints are applied, the longitudinal plastic strain of the weld and its adjacent metal decreases, and the longitudinal contraction force of the thin plate also decreases.[Conclusions ] The results verify that external restraints can effectively control welding buckling distortion, and the control effects are different depending on the external restraint distribution. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

2.
<正>All structures at sea are in contact with the water and thus the knowledge of the interaction effects between the fluid and the structure is essential.Depending on the characteristics of the structure,of the fluid and of the relative motion,different mechanisms may be in place and thus different mathematical models may be required for the computation of its interaction.  相似文献   

3.
Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant reference values during the platform design procedure. In this paper, a series of numerical simulation on the interaction of a triple-hulled offshore observation platform with different incident waves is carried out. All of the simulations are implemented utilizing our own solver naoe-FOAM-SJTU, which is based and developed on the open source tools of OpenFOAM. Duration curves of motion characteristics and loads acting on the platform are obtained, and a comparison between the results of the amplitude in different incident waves is presented. The results show that the solver is competent in the simulation of motion response of platforms in waves.  相似文献   

4.
The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic, and also for structural design and equipments arrangement are so important in the ship design process. Planning tunnel high speed craft is one of the crafts in which, achievement to their top speed is more important. These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance, good sea-keeping behavior, reduce slamming and avoid porpoising. Because of the existence of the tunnel, the hull form generation of these crafts is more complex and difficult. In this paper, it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters, to generate automatically the hull form of planning tunnel craft. At first, the equations of mathematical model are described and subsequent, three different models generated based on present method are compared and analyzed. Obviously, the generated model has more application in the early stages of design.  相似文献   

5.
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.  相似文献   

6.
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics(CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation(RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox(2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.  相似文献   

7.
In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogden and Erskine’s experiments, sound scattering from the sea surface has three different regimes in which two mechanisms of surface roughness and subsurface bubble clouds are involved. Ogden-Erskine’s scattering relation which consists of perturbation theory and Chapman-Harris’ s scattering terms are verified by the experimental data of Critical Sea Tests 7. Subsequently, wind speed in the Persian Gulf is provided based on three data bases of Arzanah station, ERA40, and PERGOS. Accordingly, surface scattering strength in the Persian Gulf region is calculated at different grazing angles, frequencies and provided wind speeds. Based on the resulted values of scattering strength, scattered intensity from the sea surface is also studied. These studies indicate that both scattering strength and scattered intensity generally increase as grazing angle, frequency and wind speed increase.  相似文献   

8.
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory(NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox Open FOAM coupled with arbitrary mesh interface(AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.  相似文献   

9.
The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is necessary to establish accurate burning models for solid propellants. Based on combustion models using powder rings and two different solid ignition grains, namely star-shaped ignition grains and stuffed ignition grains, a mathematic model of the ignition process of the propulsion system was built. With the help of Matlab, a series of calculations were made to determine the effects of different grains on ignition characteristics. The results show that stuffed ignition grain is best suited to be the ignition grain of a thermodynamic undersea vehicle system.  相似文献   

10.
The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the towing force of a vessel. A multi-objective genetic algorithm based on analytical models of the plow surface has been examined and applied in efforts to obtain optimal design of the plow. For a specific soil condition, the draft force and moldboard surface area which are the key parameters in the working process of the plow are optimized by finding the corresponding optimal values of the plow blade penetration angle and two surface angles of the main cutting blade of the plow. Parameters such as the moldboard side angle of deviation, moldboard lift angle, angular variation of the tangent line, and the spanning length are also analyzed with respect to the force of the moldboard surface along soil flow direction. Results show that the optimized plow has an improved plow performance. The draft forces of the main cutting blade and the moldboard are 10.6% and 7%, respectively, less than the original design. The standard deviation of Gaussian curvature of moldboard is lowered by 64.5%, which implies that the smoothness of the optimized moldboard surface is much greater than the original.  相似文献   

11.
The research on signal-obtaining pattern for a new type of gyroscope   总被引:6,自引:0,他引:6  
In this paper, a photoelectric signal obtained scheme via equator triangle pattern engraved on rotor is discussed and the mathematic model is deduced in the case which is deflexion between rotor axis and the coordinate frame of case. The deflexion error and coupling error under the situation are analyzed. Finally, three methods of engraving based on the spherical triangle pattern are presented. The error models of various methods are built up and the simulation curves are provided respectively. We have done the primary experiments on the surface of rotor using this method. It can be seen from the enlarged figures that the rim of the pattern is smooth and the demand of sensor resolution is satisfied by and large. The results of study supply reference for signal obtaining.  相似文献   

12.
Real-time modeling and simulation of flight system are the key parts of simulator. After describing the architecture of simulator for a newer fighter, author presents the composition of flight system and its mathematic models. In this paper, aircraft is regarded as an elastic flight body. And a new integrated algorithm which can remedy the shortcoming of Euler method and four-element method is used to calculate the Eulerian angles of aircraft. Finally, the software implementation of the flight system is given in the paper.  相似文献   

13.
The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion.Good planning and management of container terminal operations reduces waiting time for liner ships.Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties.Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions.Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships.We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems.We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results.The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.  相似文献   

14.
In this work, the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated. In the present paper, Reynolds Averaged Navier Stokes(RANS) equations with the Spalart-Allmaras, SST k-ω, and SST-Trans models are used for numerical simulations. The possibility of laminar-toturbulent boundary layer transition is summarized in phase diagrams in terms of skin friction coefficient and Reynolds number.The numerical results show that SST-Trans method can detect different aspects of flow such as adverse pressure gradient and laminar-to-turbulent transition onset. Our numerical results indicate that the laminar-to-turbulent transition location on the 6:1 prolate spheroid is in a good agreement with the experimental data at high Reynolds numbers.  相似文献   

15.
A“Market” based framework for multiple AUVs team is introduced in this paper. It is a distributed meta-level task allocation framwork. The formulation and the basic concepts of the “Market” such as “goods” and “price” are discussed first, then the basic algorithm of the “auction”. The loosely coupled v-MDTSP tasks are considered as an example of the task allocation mission. A multiple AUV team controller and a detailed algorithm are developed for such applications. The simulation results show that the controller has the advantages such as robustness and low complexity and it can achieve better optimization results than the classical central controller ( such as GA) in some tasks. And the comparison of two different local solvers also implies that we should get the reasonable task allocation even not using the high quality algorithm, which can considerably decrease the cooperation computation.  相似文献   

16.
To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it reaches the ‘Tsai-Wu' yield surfaces, which are a series of concentric elliptical curves of different sizes. Decreasing temperature results in a large yield surface. Failure criteria, based on the influence of accumulated plastic strain and hydrostatic pressure, are built into the model. Based on published experimental data on the relationship between depth and temperature in icebergs, three typical iceberg temperature profiles are proposed. According to these, ice elements located at different depths have different temperatures. The model is incorporated into LS-DYNA using a user-defined subroutine and applied to a simulation of FPSO collisions with different types of icebergs. Simulated area-pressure curves are compared with design codes to validate the iceberg model. The influence of iceberg shape and temperature on the collision process is analyzed. It is indicated that FPSO structural damage not only depends on the relative strength between the iceberg and the structure, but also depends on the local shape of the iceberg.  相似文献   

17.
The max collision force of ship-bridge collision is one of the most important references for bridge design. By means of nonlinear digital simulation method, the collision forces of the collisions between rigid bridge pier and ship bow were calculated out for four different ships, whose tonnages are 5 000, l0 000,50 000 and 60 000 DWT respectively. Curves of collision force-penetration and absorbed energy-penetration are obtained, and the data of the max loads are then summarized. On the basis of these curves and data, a set of curves describing the relationships between max collision forces and tonnages of the ships are successfully presented, by which the max collision forces of the ships-bridge with different tonnages and in different velocities can be estimated easily and reliably.  相似文献   

18.
The wrack or the ship out of control will drift with flow.One of the most important factors that drive the ship is flow current which moves circularly in tidal area.The wrack from same place always drifts in different ways if the start time is different.So,during the ship drifting period,the drift trace is also determined by both wave and wind forces.The drift direction is limited by water depth which must be deeper than ship draft. These marine structures that can not afford the hit of wrack or will destroy the wrack must be well considered when they are placed near harbor and waterway or other water area with ship running.The risk zone should be consulted according to tide and weather conditions to protect structures and ships in necessary.A method is presented here to simulate the risk zone by 2D numerical hydraulic model with tidal current,wave,wind and water depth considered.This model can be used to built early-warning and protect system for special marine structure.  相似文献   

19.
有限水深中垂直下潜弹性薄板的水波散射(英文)   总被引:1,自引:0,他引:1  
The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here.The boundary condition on the elastic plate is derived from the Bernoulli-Euler equation of motion satisfied by the plate.Using the Green’s function technique,from this boundary condition,the normal velocity of the plate is expressed in terms of the difference between the velocity potentials(unknown)across the plate.The two ends of the plate are either clamped or free.The reflection and transmission coefficients are obtained in terms of the integrals’involving combinations of the unknown velocity potential on the two sides of the plate,which satisfy three simultaneous integral equations and are solved numerically.These coefficients are computed numerically for various values of different parameters and depicted graphically against the wave number in a number of figures.  相似文献   

20.
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients(APGs) is conducted by using Reynolds-averaged Navier-Stokes(RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox(2006) k-ω are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号