首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高速列车通过截面突变隧道时压力波的数值模拟研究   总被引:1,自引:0,他引:1  
高速铁路隧道压力波是铁路高速化中日益突出的问题之一,而高速列车通过截面突变隧道时压力波特性目前研究较少。本文根据高速列车通过隧道过程中引起空气流动的特点,在对复杂空气流动现象进行合理简化的基础上,采用一维可压缩不等熵非定常流体流动模型和广义黎曼变量特征线法发展了截面突变隧道压力波的数值计算方法,并给出了相应的边界条件,随后与国外典型试验数据进行了比较,证明本方法的正确性。在此基础上本文分别对单车和会车通过截面突变隧道的压力波进行了数值分析,对揭示截面突变隧道内压力波特征及截面突变对隧道压力波的影响有一定的意义。  相似文献   

2.
随着列车运行速度的提高,隧道空气动力学问题越来越突出。2005年5月在遂渝线进行了高速列车过隧道试验,对列车和隧道内空气压力变化、隧道内列车风和隧道口微气压波等参数进行了测试。结果表明:隧道内列车风风速与列车运行速度成线性关系,并且与车头和车尾的外形、列车长度、隧道截面面积及其长度等因素有很大关系;隧道壁面压力近似与列车运行速度的平方成正比;同等速度条件下,钝头型的25T提速客车引起的隧道壁面压力变化幅值比流线型动车组的大38.6%;由于双层集装箱列车较高且集装箱间的间距较大,致使同等速度下引起的隧道壁面压力变化最大;隧道入口的压力变化明显大于隧道出口的压力变化,在隧道口附近,三维效应非常明显,且每种车型均不同。因此,将列车和隧道耦合起来设计出合理的隧道和列车截面形状,是减小隧道空气动力学效应的有效途径。  相似文献   

3.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

4.
隧道空气压力波浅水槽拖动模型试验的实时检测   总被引:16,自引:0,他引:16  
实时检测是浅水槽拖动模型试验模拟高速列车在隧道内运行时空气压力波变化的关键技术,本文对这一问题进行了深入研究,成功地研制了实时检测系统,并取得了满意的试验效果,对隧道压力波的试验研究具有重要的应用价值。  相似文献   

5.
高速列车隧道压力波浅水槽模拟试验研究   总被引:2,自引:1,他引:1  
当高速列车进入隧道时,在列车前端的隧道空间引起空气的不稳定流动并形成压力波,压力波的形成可以通过自由表面水波运动的水波高度与可压缩流体运动压力的相似关系来模拟。本文介绍了自建的浅水槽模拟试验装置,并利用该装置研究了高速列车进入隧道时引起的压力波动。实验结果表明,压力波浅水槽模拟试验方法及其试验台的研制是成功的,测试结果可以用来校核复杂结构隧道压力波的数值计算。  相似文献   

6.
基于变流通截面的高速铁路隧道单车压力波数值计算探讨   总被引:7,自引:2,他引:5  
梅元贵  耿烽 《铁道学报》2003,25(2):74-78
基于隧道内空气流通截面是时间和距离的二元函数条件与一维可压缩非定常不等熵流动理论,提出了高速铁路隧道单车压力波广义黎曼特征线法的计算方法和计算程序,并进行了不同喇叭状隧道端口条件下和不同列车前端鼻部长度的空气动力学效应的分析计算。  相似文献   

7.
高速列车通过隧道时产生的瞬变压力场和舒适度标准   总被引:1,自引:0,他引:1  
本文从分析高速列车通过隧道时空气压力的瞬变,影响压力变化的因素,列车风和车厢内的压力变化出来,简述了一些国家制订的乘客听觉舒适度标准。  相似文献   

8.
利用计算流体动力学软件 Star-CD,建立了列车通过隧道时的二维动网格模型,模拟在不同车速下,隧道内活塞风和压力场的动态变化规律,并比较不同外形和运行速度时列车所受到的空气阻力.模拟结果表明:列车通过隧道时的运行速度越大,产生的活塞风风速越大,相对压力越大,列车所受的空气阻力越大;列车通过隧道内某一测量点时,活塞风风速会发生突降,活塞风最大风速在列车尾流中形成;车头到达隧道入口时,最大压力突增,并很快达到最大值,随后逐渐减小;车尾到达隧道入口时,车尾最小压力突降;车身在隧道内时,车尾的最小压力波动较小;流线形列车所受的空气阻力约为钝形列车的0.5~0.7倍.  相似文献   

9.
钝形、流线形列车会车压力波的试验对比研究   总被引:6,自引:2,他引:4  
依据现场试验结果,探讨了钝形列车和流线形列车的会车压力波的主要差异,以及它们对铁路提速改造的影响。所给出的会车压力波系数经验估算式与试验拟合曲线具有良好的吻合精度,并提出了使用时应注意的问题。  相似文献   

10.
为了减缓高速列车通过隧道引起的压力波动,研究了联络通道对高速列车通过隧道时压力波特性的影响.建立了3节编组高速列车数值仿真计算模型,基于三维非定常可压缩Navier-Stokes方程,以及k-ε方程湍流模型和滑移网格技术,数值模拟了高速列车通过联络通道时隧道的气动特性,研究了设置联络通道对隧道压力波的影响及不同的通道间距对隧道压力波动的影响.研究结果表明:与无联络通道隧道相比,列车通过连通开孔隧道的气动特性得到明显改善;通道对初始压力上升、下降的抑制效果更为明显,对膨胀波的抑制作用更为突出.联络通道的设置使隧道压力波的波形呈现局部锯齿状.  相似文献   

11.
高速列车突入隧道时的三维非定常流的数值模拟   总被引:4,自引:0,他引:4  
给出高速列车突入隧道形成压力波的三维粘性流场数值模拟过程,控制方程三维粘性、可压缩、不等熵、非定常流的Navier Stokes方程。空间离散采用中心有限体积法格式,时间采用预处理二阶精度多步后差分格式进行离散,对列车与隧道之间的相对运动采用滑动网格技术。真实地描述列车进入隧道所形成压缩波的过程。计算结果与国内外的试验结果相符。计算结果表明:隧道内的压缩波呈现三维特性;同一断面上的压力变化的差异性与列车的运行方式有关。  相似文献   

12.
对高速列车交会空气压力波的研究方法作了较为全面的分析与介绍,并对我国首次设计的高速列车外形进行了列车交会空气压力波风洞模拟试验,所得结果与德国研制ICE时所作同类试验基本一致。  相似文献   

13.
当列车进入高速铁路隧道时,在列车车头前形成压缩波,压缩波在隧道出口处部分向外释放出一种脉冲压力波,这种脉冲压力波的大小取决于到达隧道出口的压缩波的波前形状。文章研究了道碴效应对压缩波传播过程中的减缓效果,建立了道碴轨道隧道内压缩波传播的基本方程,并与国外的现场实测结果进行比较,能较好的吻合,为工程实际应用提供了有益的参考。  相似文献   

14.
根据三维不可压缩Navier-Stokes方程和标准k-ε湍流模型,以带有竖井的高速铁路隧道为研究对象,建立隧道-竖井-列车-空气三维数值模型,列车运行速度为350 km/h,研究高速铁路隧道竖井交叉结构段列车风的时程变化规律和空间分布特点,分析竖井面积、长度和交叉角度对列车风的作用效果,判定高速铁路单、双线隧道交叉结构段列车风最不利情况。研究结果表明:隧道线路上方典型位置处纵向列车风速度峰值分别是横向列车风和竖向列车风的4.4倍和2.6倍;列车车头经过隧道交叉结构段时,该位置纵向列车风形成涡流,单线隧道处其速度超过20 m/s;竖井会造成隧道交叉段45 m范围内的列车风速度大于一般结构段;高速列车经过单、双线隧道交叉结构段时,典型位置处纵向列车风的速度最大值分别为20.16和18.20 m/s。  相似文献   

15.
张畲 《铁道建筑》1994,(8):28-31
本报告叙述在列车通过单线隧道时通风竖井对压力发展过程的影响,这些压力量测值是在列车上和隧道里的固定点上记录的,在半闭和打开竖井的两种情况下,列车以各种速度作30次试验运行,以验证通风竖井的影响。  相似文献   

16.
随着列车速度的不断提高,高速铁路隧道空气动力学问题进一步凸现。微压波辐射作为长大隧道建设中不可避免的重要空气动力学问题,愈来愈受到高速铁路建设者的重视。分析微压波的特性和形成机理,探索减缓微压波辐射影响的措施,以期为高速铁路隧道设计提供参考。  相似文献   

17.
为研究高速列车通过高海拔、大坡度和特长隧道下压力波的特性,基于一维可压缩非定常不等熵流动模型的广义黎曼变量特征线法模拟列车通过隧道时的车外压力,采用时间常数法计算车内压力;分别利用国外数值模拟结果和国内西成高铁实车试验数据,验证方法的合理性和准确性;以速度200 km·h-1的单列8编组高速列车为研究对象,分析列车通过4种海拔、5种坡度和4种长度组成的不同隧道时,车内外压力波动和最值的变化规律。结果表明:隧道内初始压力是影响车内外压力幅值的根本原因;车内外最大正、负压均随隧道海拔的升高而线性减小,随隧道坡度和长度的增加而线性增大;与下坡相比,列车上坡运行时车内的压力舒适性更为恶劣、气密性要求更高;列车上、下坡通过坡度30‰、进口端海拔4 500 m、长42 km隧道时,车外最大正、负压分别为9.85和-9.63 kPa,列车动态气密时间常数不应小于1 713 s。  相似文献   

18.
高速列车进入有缓冲结构隧道的压力变化研究   总被引:2,自引:0,他引:2  
采用高速列车空气动力学模型实验对高速列车在进入带缓冲结构隧道过程中瞬变压力传播机理进行研究。实验结果表明,缓冲结构能够减缓隧道内瞬变压力。其原因在于:缓冲结构横断面积逐渐由大变小,阻塞比逐渐由小变大,延长了压力上升时间,降低了压力梯度;另一方面,由于压缩波在缓冲结构和列车、隧道之间多次反射,降低了压力峰值。在M.S.Howe提出无缓冲结构下最大压力波变化理论基础上提出有缓冲结构时隧道内最大压力和最大压力梯度变化规律计算公式。所得结论可为隧道空气动力学研究提供参考。  相似文献   

19.
高速列车通过隧道时隧道内压力变化的试验研究   总被引:2,自引:0,他引:2  
通过以空气为流体的高速列车模型试验,研究高速列车通过隧道时产生的压力变化.试验结果表明了隧道内产生的压力变化与列车速度、阻塞比之间的关系.  相似文献   

20.
列车在高速会车时产生的空气压力波会给交会车辆的侧窗造成很大的冲击,有可能出现破窗事故,给乘客和列车运行带来安全隐患。基于三维、非定常两方程湍流模型,利用计算流体软件Fluent,对某型地铁车辆与不同型号的铁路高速列车(CRH380A、CRH2、CRH3型)交会时的空气动力学性能进行了数值仿真,得到侧窗上的会车压力波变化曲线。仿真计算结果表明:在地铁列车与铁路高速列车的交会过程中,地铁列车所受到的侧力远大于高速铁路列车所受到的侧力,交会产生的瞬变压力波对地铁列车侧窗的影响也更大。当地铁列车与CRH380A型高速列车交会时,与其和其它两种型号的列车交会相比,地铁列车侧窗所受到的压力波幅值最小,而当地铁列车与CRH2型铁路列车或CRH3型铁路列车交会时,地铁列车侧窗所受到的压力波幅值均较大,其波动的峰峰值也更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号