首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了减小重载列车因制动及缓解不同步而造成的纵向冲动,研究制动特性对纵向冲动的影响,根据线路试验实测数据分析了单编万吨列车在常用制动及缓解工况下的试验特性.结果表明:单编万吨列车减压50 kPa常用制动时制动波速为163 m/s,减压100 kPa常用制动时制动波速为202 m/s.列车在制动过程中,制动作用沿列车长度方向具有制动起始时间的不同时性和制动缸升压速度的不均匀性.单编万吨列车常用制动不论制动减压量多少,随着车辆序号的增大,勾贝伸出时间均变长,列车管减压量越大,则制动缸勾贝伸出越早,首尾车开始制动的时间差越小,即平均制动波速越高.缓解工况时各车位从列车管开始充气到制动缸开始排气存在一定的时间差,所以列车管开始充气一段时间后列车管缓解曲线才出现明显的尖峰,加速缓解风缸才开始发挥"局部增压"的作用.  相似文献   

2.
为解决现有防滑效率计算方法准确性低、评价效果差等问题,在深入分析列车制动防滑过程中轮轨黏着系数变化规律及特点的基础上,修正了列车制动防滑过程减速度峰值包络线,使其接近理想减速度曲线,进而提出一种新型防滑效率计算方法;结合列车制动防滑系统实际工作原理,搭建了列车制动防滑效率仿真验证平台,在仿真层面验证了减速度包络线修正的正确性和新型防滑效率计算方法的准确性;在不同仿真工况下对比分析了6种防滑效率计算方法的合理性和防滑性能评价效果,并基于实车防滑试验验证了新方法的实用性。研究结果表明:搭建的列车制动防滑效率仿真验证平台所得列车制动时间、制动距离等计算结果与相同工况下实车防滑试验结果的相对误差不超过5%,可用来验证和分析防滑效率计算方法与防滑性能评价效果;修正后的减速度峰值包络线与理想减速度曲线的相对误差不超过4.5%;当防滑控制策略不变时,新型防滑效率计算方法对列车在不同制动级位和黏着水平下的仿真结果相差不超过1.1%,试验结果相差不超过3.5%,且防滑效率均小于100%,稳定性良好;采用不同防滑控制策略时,新型防滑效率计算方法的仿真结果存在明显差异,且不同控制策略对应的防滑效率与其防滑性...  相似文献   

3.
比较了目前两种常见的组合列车制动系统特性获取方法的差异,通过对比发现,两种方法得到的制动特性在平道常用全制动工况下,最大车钩力可产生48%的差异.列车制动特性主要表现为制动波传播特性和制动缸升压特性,其中制动缸升压特性的差异是造成两种方法计算结果较大差异的主要原因.组合列车中任一车辆的制动特性受所有机车排气的影响,制动系统仿真方法中考虑了多机车排气对列车中车辆的减压速度的影响,因此制动特性更接近于真实组合列车制动特性.而使用单编万吨列车制动试验特性插值计算组合列车制动特性方法没有考虑多机车排气影响,对列车纵向冲动分析结果会造成较大的误差.  相似文献   

4.
运用Simpack建立了高速列车动力学模型,分析了高寒地区列车制动过程中的受力情况,设计了400 km/h高速列车紧急制动与最大常用制动减速度曲线,并进行了黏着校核。结果显示所设计的减速度曲线能满足400 km/h高速列车的制动需求。运用MATLAB/Simulink建立制动系统模型,通过仿真计算得到高寒地区干燥和冰雪条件下紧急制动距离和最大常用制动距离。  相似文献   

5.
为了探究高速铁路制动区间的典型钢轨波磨现象,基于轮轨摩擦自激振动诱导钢轨波磨的观点展开了研究,通过武广高速铁路制动区段的现场调研,掌握该区段的波磨特征并采集相应的轨道不平顺;基于轮轨摩擦自激振动诱导钢轨波磨的观点分别建立制动区段高速列车的动/拖车轮对-轨道-制动系统的有限元模型,并利用复特征值法进行动/拖车轮轨系统的摩擦自激振动分析,比较动/拖车轮轨系统在制动和非制动工况下系统发生摩擦自激振动的可能性,以及在制动工况下动车轮轨和拖车轮轨系统的摩擦自激振动情况;使用控制变量法研究了制动系统摩擦系数和扣件垂向刚度对动/拖车轮轨系统摩擦自激振动的影响规律.研究结果表明:制动工况更容易引起系统的摩擦自激振动;拖车轮轨系统更容易引起系统摩擦自激振动;控制制动装置摩擦系数约为0.30,扣件垂向刚度约为50 MN/m时能一定程度降低轮轨系统发生摩擦自激振动的可能性,进而抑制钢轨波磨的产生.  相似文献   

6.
考虑了车辆导向轮对一侧轴箱钢簧出现失效的四种工况:钢簧内外圈均断裂、外圈断裂、内圈断裂和钢簧"冻死",建立了钢簧失效工况下的车辆系统动力学模型,分析了钢簧失效对车辆动力学性能的影响。仿真结果表明:钢簧失效后,轮对的平衡位置偏离轨道中心线,全断裂工况下偏离最大,约为3mm;车辆的临界速度降低,全断裂工况下降低最大,约为30km·h-1;失效弹簧所在轮对的轮载差变化较大,全断裂工况下轮载差最大,约为50kN;转向架断裂弹簧处及其斜对角轴箱悬挂垂向力将减小,另一对角处的轴箱悬挂垂向力将增大,从而使转向架承受较大的扭曲载荷;钢簧失效很容易使脱轨系数和轮重减载率等安全性指标超过限定值,增加了车辆运行安全的隐患,在直线上200~300km·h-1速度范围内和曲线(半径为7 000m)上100~300km·h-1速度范围内,全断裂工况下的减载率都超过0.8;钢簧失效对车辆横向平稳性影响不大,但钢簧"冻死"会使垂向平稳性变差,相对于正常工况,在300km·h-1时增加约0.1。  相似文献   

7.
为降低70%低地板有轨电车的车轮磨耗,分析了刚性轮对与独立旋转车轮的导向机理,建立了拖车采用传统刚性轮对与拖车采用独立旋转车轮的两种车辆模型,计算了两种车辆模型在不同工况下的动力学性能,并根据Archard磨耗模型对比分析了两种模式下的车轮磨耗情况. 计算结果表明:车辆直线运行时,拖车采用刚性轮对的车辆稳定性及横向平稳性较好,车轮磨耗位置居中且磨耗量小于独立旋转车轮;车辆运行于大半径曲线时采用刚性轮对的车辆曲线通过评价指标较好,磨耗量较独立旋转车轮小;随着曲线半径的减小,采用刚性轮对的车辆曲线通过性能迅速恶化而采用独立旋转车轮的车辆各指标变化幅度较小,在半径为100 m及以下的曲线时,采用独立旋转车轮的车辆曲线性能更优且车轮磨耗小于刚性轮对,特别在曲线半径为25 m时,独立旋转车轮磨耗量仅为刚性轮对的60%左右,拖车采用刚性轮对的车辆在直线及大半径曲线时性能较优,拖车采用独立旋转车轮的车辆更适用于小半径曲线.   相似文献   

8.
地铁列车空气制动系统仿真模型   总被引:1,自引:0,他引:1  
分析了地铁列车空气制动系统工作原理与构成,研究了容性、阻性和感性单元三类基本气动元件建模原理,根据相似性原理,通过AMESim软件建立了地铁列车空气制动系统仿真模型,介绍了空重车阀、EP单元、中继阀等部件建模过程,并对仿真参数进行了分析.研究了常用制动、紧急制动和阶段制动工况下制动缸压力与Cv压力变化特性,并进行了试验台对比验证.分析结果表明:在常用、紧急制动时,Cv压力比制动缸压力响应快,最大延时不超过0.5s,稳定时两者压力相等;紧急制动时制动缸压力上升至定压的时间小于1.5s,常用制动时小于2.2s;阶段制动时制动缸压力与Cv压力跟随性较好.试验中制动稳定后Cv压力比制动缸压力高约15 kPa,由中继阀内部橡胶件阻尼作用引起,该误差不影响中断阀正常使用.  相似文献   

9.
《黑龙江交通科技》2016,(2):127-129
基于低地板有轨电车液压制动原理,参考用于长春轻轨低地板车制动系统,运用AMESim仿真软件,建立拖车液压制动单元模型,仿真分析关键元件的性能和制动系统的制动过程,并讨论了蓄能器参数对制动缸压力动态性能的影响。仿真结果从理论上验证了制动单元的可靠性,也通过参数化动态分析为国产化液压制动系统的设计、改进提供了依据。  相似文献   

10.
建立了装备空气弹簧的车辆系统数学模型,推导了悬挂系统柔度系数计算公式,分析了悬挂参数对车辆柔度系数的影响规律。设计了重锤法、角度测量法和加速度测量法测定悬挂系统柔度系数。利用重锤法对某车辆进行测试,分析不同载质量和外轨超高工况下的动、拖车柔度系数分布。理论计算结果表明:提高悬挂系统刚度,增大悬挂系统横向跨距,降低车体和构架的重心高度均可减小柔度系数,从而可提高车辆的抗倾覆性能。试验结果表明:拖车柔度系数大于动车柔度系数,空载时相差0.021,重载时差异不大;重载时的柔度系数大于空载状态的柔度系数,最大相差0.109;最恶劣工况为拖车重载状态,柔度系数最大值为0.245。柔度系数随着外轨超高的增加而增大,且超高越大,柔度系数增长速度越快,因此,在大超高线路上应严格控制车辆柔度系数。试验结果验证了理论分析的可信性,且理论公式考虑的悬挂系统参数全面。  相似文献   

11.
对原有试验台架的信号处理和液压系统进行改进,进行了YJH315钣金型液力变矩器的牵引试验。应用三维流场数值计算方法,提出了YJH315钣金型液力变矩器外特性的动量矩方程、力矩方程与性能参数计算方法。分别通过MATLAB仿真软件和实测试验得到了不同转速比下的效率、变矩系数和公称力矩,并将仿真结果与试验结果进行对比分析。分析结果表明:当转速比在0~0.9时,试验工况下的最大效率为0.82,仿真工况下的最大效率为0.79,效率的最大误差约为2%;试验工况下的最大变矩系数为2.41,仿真工况下的最大变矩系数为2.29,变矩系数的最大误差约为3%;试验工况下的最大公称力矩为28.7N·m,仿真工况下的最大公称力矩为27.3N·m,公称力矩的最大误差约为3%。3个指标的误差均在可接受范围之内,说明提出的钣金型液力变矩器外特性计算方法可行。  相似文献   

12.
轮胎磨损对车辆制动效能影响的试验   总被引:1,自引:0,他引:1  
以全新轮胎与旧轮胎为例进行理论分析和装车试验,对试验数据进行多项式拟合,分别建立制动初速度-制动距离和制动初速度-平均减速度关系曲线。研究表明:新胎车辆的制动效能明显优于旧胎车辆的制动效能,说明轮胎的磨损程度对车辆的制动效能有很大的影响,并进一步影响到车辆的行驶安全性。  相似文献   

13.
以全新轮胎与旧轮胎为例进行理论分析和装车试验,对试验数据进行多项式拟合,分别建立制动初速度-制动距离和制动初速度-平均减速度关系曲线。研究表明:新胎车辆的制动效能明显优于旧胎车辆的制动效能,说明轮胎的磨损程度对车辆的制动效能有很大的影响,并进一步影响到车辆的行驶安全性。  相似文献   

14.
针对重载列车纵向冲动问题,根据气体流动理论和机车动力制动特性,开发并完善了重载列车空气制动系统与纵向动力学联合同步仿真系统.对制动系统传动效率与机车电制动系统模型进行修正,细化了模型,提高了仿真系统精度.根据神华线路机车操纵控制指令,仿真机车编组为2+1时的停车与运行制动工况,将仿真结果与神华线路运行试验结果对比.计算结果表明:在空气制动停车与运行工况时,各车位列车管和制动缸压强曲线试验与仿真结果基本一致;在停车与运行制动工况且施加机车制动电流的情况下,车钩力变化试验与仿真结果基本一致,最大车钩力试验与仿真误差在0.7%~14.2%之间,吻合程度较高.  相似文献   

15.
为了在道路设计阶段预测车速,保证公路几何线形的协调性,建立了考虑侧向容许加速度、纵向加速度、制动减速度、制动热衰退和环境速度与线形参数关系的模型,计算了期望速度;建立了公路-驾驶者-车辆-环境仿真系统,对在三维路面上的行驶车辆进行仿真,得到并分析了试验道路的运行速度曲线.结果表明:(1)为有效控制速度波动,应取相近的曲线半径和直线长度,且直线不宜过长;(2)出弯道加速长度大于进弯道减速长度,且二者都大于回旋线长度;(3)山区路线由多个急弯构成时,速度曲线频繁波动的部分原因是车辆自身旋转动能和平动动能的相互转化;(4)运行速度协调性方法不适用于四级公路的线形评价;(5)偏角越小,轨迹对弯道的切角作用越大,弯道车速越高.  相似文献   

16.
针对重载列车纵向冲动问题,根据气体流动理论和机车动力制动特性,开发并完善了重载列车空气制动系统与纵向动力学联合同步仿真系统.对制动系统传动效率与机车电制动系统模型进行修正,细化了模型,提高了仿真系统精度.根据神华线路机车操纵控制指令,仿真列车编组为2+1时的停车与运行工况,将仿真结果与神华线路运行试验结果对比.计算结果表明:在空气制动停车与运行工况时,各车位列车管和制动缸压强试验与仿真结果基本一致;在停车与运行工况且施加机车制动电流的情况下,车钩力变化试验与仿真结果基本一致,最大车钩力试验与仿真误差在0.7%~14.2%之间,吻合程度较高.  相似文献   

17.
为定量化得出高速公路同一车道中前后相邻车辆的碰撞概率,从制动减速度的角度出发,提出一种新的前后相邻车辆碰撞概率计算方法。分别考虑前后车发生碰撞的3种不同情况,推导出如果发生碰撞前车需要的最小制动减速度。基于路侧毫米波雷达获取海量车辆运行状态真实数据,包括轨迹、速度以及制动减速度的变化规律,采用广义帕累托分布(Generalized Pareto Distribution,GPD)建立制动减速度分布模型,进一步基于GPD模型计算出在不同场景下如果发生碰撞所需最小制动减速度的发生概率,将该概率值确定为碰撞概率。研究结果表明,在本研究路段,约99.10%的加速度在[-1, 1] m·s-2的区间范围内波动,车辆制动减速度的分布具有“长尾”特征,较大的制动减速度占比非常小。内侧1车道、2车道加速分布比3车道的分布更为集中,大型货车的加速度分布比小客车的加速度分布更集中。最后,基于真实的危险场景数据以及模拟的典型危险场景数据进行验证,将该方法的计算结果与传统方法的计算结果相比较,表明该方法的计算结果连续,且可迅速、准确地识别各类危险场景。  相似文献   

18.
为了满足当前智能车线控制动需求,提出了一种串联式电子液压线控制动系统及其控制算法.在原车液压主缸和ESP之间的双液压管路上串联了线控液压增压装置包括增压阀、减压阀和液压泵,保留了原双管路安全设计以及主动和人工制动模式的有效性,易于和电子驻车制动系统集成.通过双路增压、高压储能和预制动,缩短了系统的响应时间.经过测试,双液压管路上10.0 MPa建压时间仅为172ms,控制精度±0.16 MPa;9.0 m·s~(-2)减速度响应时间为183 ms,控制精度±0.15m·s~(-2).结果表明:该线控制动系统响应快、控制精度高,配合电子驻车制动系统可以满足智能车线控制动需求.  相似文献   

19.
应用流体动力学理论,建立了重载列车制动管路模型与分配阀模型,求解了制动管路和边界点的动力学方程,仿真计算了制动过程中的制动系统性能,分析了列车主管和支管长度对制动系统性能的影响。分析结果表明:当列车主管长度由13.24 m增大为17.24 m时,在常用制动下,列车管路减压时间增大了30.75%,制动缸升压时间增大了20...  相似文献   

20.
建立车辆系统数学模型,理论分析转向架相对车体的回转运动过程,推导装备空气弹簧转向架车辆的回转阻力系数计算公式.利用参数试验台进行回转阻力系数测试,验证数学模型和理论计算结果的可信性,分析动拖车在不同载重下的回转阻力系数分布规律,研究空簧状态对回转阻力系数的影响.分析结果表明:空簧正常、过充状态下理论计算值均低于试验值,最大相差0.02,原因为理论计算时未考虑不同转动速度下的空簧动刚度特性与其他悬挂部件的阻力作用;回转阻力系数与转动角度和转动速度成正比,1.0(°)·s-1时的回转阻力系数要远大于0.2(°)·s-1时的结果,最大相差0.047;在空簧失气状态下,试验值大于计算值,且转动速度越大,差异越显著;空簧过充对回转阻力系数影响不大,最危险工况为拖车空车在空簧失气状态下,回转阻力系数为0.093.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号