共查询到20条相似文献,搜索用时 15 毫秒
1.
以青海省海黄大桥为工程背景, 建立了考虑气象参数的组合梁温度场有限元分析模型, 采用实桥测试数据对模型进行了验证; 分析了“上”形组合梁四季竖向温度分布, 给出了升温和降温时竖向温度梯度简化模式, 研究了太阳辐射强度、气温和风速等气象参数对温差的影响规律, 采用极值统计方法给出了50年一遇气象参数代表值下不同沥青混凝土铺装厚度的“上”形组合梁最不利竖向温度梯度模式。研究结果表明: 在日照升温和夜间降温过程中, 组合梁竖向温度梯度模式不同; 升温过程中最大温差出现在14:00, 温度梯度模式可简化为“顶部5次抛物线”加“底部折线”的形式, 顶部温差受沥青混凝土铺装厚度影响较大, 当铺装厚度分别为0、50、100、150mm时, 顶部温差极大值分别为23.8℃、31.7℃、24.1℃、17.4℃, 底部温差极大值可取5.1℃; 降温过程中最大温差出现在2:00, 温度梯度模式可简化为“顶部双折线”与“底部等温段”的形式, 顶部温差受沥青混凝土铺装厚度影响较大, 当铺装厚度分别为0、50、100、150mm时, 顶部温差极小值分别为-12.2℃、-8.2℃、-5.0℃、-2.9℃, 底部温差极小值可取-16.4℃; “上”形组合梁竖向温度梯度受气象参数的影响, 温度与太阳日辐射总量和气温基本呈线性关系, 而与风速表现出非线性关系; “上”形组合梁升温梯度模式与美国AASHTO规范接近, 但顶部温差取值较美国AASHTO规范高1.7℃, 降温梯度模式与欧洲规范接近, 但底部温差较欧洲规范低8.4℃, 故本文给出的温度梯度模式更为不利。 相似文献
2.
3.
根据桥梁结构整体升降温及日照和寒潮梁截面横向不均匀温度梯度,对某城际铁路三跨连续梁特大桥进行温度效应计算,得出梁截面横向不均匀温度对结构应力和变形影响较大,设计和施工时均应特别注意。 相似文献
4.
6.
混凝土箱梁受不均匀温差作用会产生较大的温度应力,故通过实例,分析混凝土预制小箱梁各施工阶段的日照温差作用,研究其温度场分布规律,并比较其与现行规范的差异,其结果可为同类工程的施工提供参考. 相似文献
7.
介绍了如何适应高寒的气候特点,减少施工过程的断板率,提高路面耐久性,保证路面良好的使用状态是高寒地区水泥混凝土路面配合比设计中的重点。 相似文献
8.
9.
介绍高寒地区混凝土桥梁裂缝形成的主要原因,从设计和施工两个方面,提出混凝土裂缝的预防与处理方法。 相似文献
10.
11.
针对考虑和不考虑界面滑移2种情况, 在任意温度分布作用下, 推导了钢-混凝土组合梁界面剪力、相对滑移和温度应力理论计算公式, 采用有限元模拟对考虑界面滑移的公式进行了验证, 并在钢-混凝土温差模式(模式1)、《公路桥涵设计通用规范》 (JTG D60—2015) 温差模式(模式2) 和英国规范BS5400温差模式(模式3) 下, 对比了温度效应的计算结果。分析结果表明: 采用考虑界面滑移的剪力理论公式计算出的组合梁界面剪力分布与有限元计算结果规律一致, 3种模式下剪力最大偏差分别为1.15%、2.65%和3.41%;组合梁界面剪力服从双曲余弦函数分布, 界面滑移服从双曲正弦函数分布; 不考虑滑移与考虑滑移计算得到的界面最大剪力基本相等, 最大偏差仅为1.22%;组合梁跨中温度应力计算值的最大偏差小于1%, 但组合梁端部温度应力计算值偏差较大, 模式3温差为20℃时, 考虑滑移时的混凝土底部温度拉应力为不考虑滑移时的1.9倍; 组合梁的界面温度效应与温差成线性关系, 斜率与温度分布模式有关, 模式1的界面剪力、界面剪应力和界面滑移的变化速率最大, 分别为9.138kN·℃-1、0.067MPa·℃-1和5.263×10-3 mm·℃-1;温差为30℃时, 模式1的界面剪力、界面剪应力和界面滑移变化速率均为模式3的3倍以上, 因此, 不考虑钢梁温度梯度会使组合梁界面剪力、相对滑移与温度应力计算结果产生偏差, 且偏差会随温差的增大而增大。 相似文献
12.
为深化对钢-混凝土组合梁桥温度作用与效应的认识, 从施工阶段水化热温度作用与效应计算, 运营阶段温度作用模式与取值, 以及温度效应计算方法等方面, 综述了国内外研究现状, 探讨了后续的研究重点和方向。研究结果表明: 现浇组合梁桥施工阶段水化热温度作用是桥面板早期开裂的重要原因, 准确计算组合梁水化热温度效应的关键在于选取更为准确适用的水化热模型和考虑温度变化对混凝土硬化过程中弹性模量、抗拉强度以及剪力钉连接刚度发展的影响; 运营环境下组合梁桥主要考虑均匀温度、正负温度梯度等3种温度作用模式, 由于不同国家气候环境的差异及研究历程的不同, 各国规范关于组合梁桥温度作用模式和取值的规定尚不统一, 温度梯度作用的取值并非基于统计分析方法得到, 在取值时亦未充分利用已有历史气象数据资源; 组合梁桥温度效应的计算多基于有限元数值模拟展开, 求解组合梁温度效应的解析计算方法也逐渐准确化, 钢-混界面关系已从不考虑界面滑移发展到考虑界面滑移, 温度分布模式从简单的钢-混均匀温差发展到钢与混凝土任意温度分布, 但还应加强建立任意边界组合梁温度效应求解的理论模型; 组合梁桥温度问题研究的未来发展方向应集中在开展基于效应分类的组合梁温度作用模式研究, 从机理上加强对组合梁温度自生效应和次生效应的认识, 加强组合梁桥长期温度实测, 基于统计分析确定组合梁温度作用代表值; 同时充分利用中国各地区气象部门历史气象数据, 开展组合梁温度作用地域差异性取值研究。 相似文献
13.
采用人工控温模拟日照温差的方法对预应力混凝土箱梁模型进行了温度场及其效应的试验,摸索了预应力混凝土箱梁在日照温差的长期作用下的下挠特性. 相似文献
14.
刘建敏 《石家庄铁道学院学报》2007,20(2):120-123
根据高寒地区特殊的气候条件,分析了高寒地区水泥混凝土路面施工中掺加引气剂的作用,结合高寒地区水泥混凝土路面施工实践,从改善水泥混凝土配合比入手,对引气剂在高寒地区水泥混凝土路面施工中的应用,做了初步的探讨。 相似文献
15.
根据高寒地区特殊的气候条件,分析了高寒地区水泥混凝土路面施工中掺加引气剂的作用,结合高寒地区水泥混凝土路面施工实践,从改善水泥混凝土配合比入手,对引气剂在高寒地区水泥混凝土路面施工中的应用,做了初步的探讨。 相似文献
16.
预应力混凝土桥梁组合结构中,混凝土自身的徐变效应会对桥梁结构的可靠性产生重要影响。选择上海某特大桥作为研究对象,采用三分点加载方式在梁上加载10KN荷载,构建了网格划分后的混凝土T形梁有限元模型。根据徐变模型将徐变系数的计算公式导入到蠕变程序中,经过编译计算得到徐变模型下的时程曲线,实现了对预应力混凝土T形梁的徐变效应分析。结果表明,修改了有限元分析软件中自带的显示蠕变准则之后,文中徐变模型得到的混凝土T形梁徐变效应与实际情况更加贴近。 相似文献
17.
应用太阳物理学理论确定了太阳的实时位置, 结合光线跟踪算法实时选取了结构的时变迎光面, 得到了结构的时变热边界条件; 以永顺—吉首高速公路石家寨立交中的一座小半径曲线刚构箱梁桥为工程背景, 参考当地历史气象数据, 以气温最高的某夏日为例, 在考虑太阳辐射、长波辐射、对流换热和风速等环境条件下, 实现了小半径曲线刚构箱梁桥三维瞬态日照时变温度场的有限元仿真, 通过热-结构耦合分析得到了小半径曲线刚构箱梁桥的日照时变温度效应。研究结果表明: 在日照时变辐射作用下, 由于小半径曲线刚构箱梁桥翼缘板的遮盖作用, 箱梁腹板受太阳直射的时间不同, 箱梁各断面腹板处最大温差为1.3℃; 小半径曲线刚构箱梁桥顶板竖向温度梯度变化规律与《公路桥涵设计通用规范》 (JTG D60—2015) 中相似, 顶板上下表面间最大温差为14.3℃, 且箱梁顶板下表面温度变化滞后箱梁顶板上表面约3 h; 小半径曲线刚构箱梁桥顶板下表面会出现最大为3.13 MPa的横向拉应力, 顶板上表面、腹板外表面也均会出现超过2 MPa的横向拉应力; 小半径曲线刚构箱梁桥梁端与跨中位移变化趋势相反, 初步揭示了日照时变辐射作用下小半径曲线刚构箱梁桥的蛇形运动规律。 相似文献
18.
交通行业的快速发展,混凝土桥梁特别是钢-混凝土的组合桥梁得到了空前广泛应用.随着混凝土连续钢构桥的应用,在运营的过程中也出现了诸多由于温度作用而引起的开裂问题,严重影响了桥梁的安全.为此,文章阐述了对混凝土桥梁展开温度效应研究的必要性,详细的分析了混凝土结构的温度效应理论,同时提出了桥梁工程中常用的温度效应控制措施. 相似文献
19.
为准确分析混凝土的收缩徐变效应,基于收缩徐变的三维特性,对自然变温度环境下的混凝土收缩徐变效应进行了分析,建立了变温环境下混凝土三维收缩徐变效应的力学模型,并结合有限元分析软件ABAQUS开发了相应的计算程序,随后通过两个算例验证了方法的可行性与结果的可靠性. 研究结果表明:对于长期下挠和混凝土应变,模型计算值最大误差分别为8.2%和 –7.1%;模型能够很好地体现温度对徐变应变的影响,总体变化趋势与实测值较为一致,最大误差为 –20.5%,随着龄期增长误差越来越小,最终值误差为6.4%. 相似文献
20.
结合我国新疆地区建筑行业的发展现状,深入的对新疆高寒地区桥梁混凝土的耐久性进行了探究,希望能够对高寒地区建筑业的发展产生积极的促进作用。 相似文献