共查询到3条相似文献,搜索用时 0 毫秒
1.
针对客户服务项目的不确定性,基于不可分辨关系的粗糙集理论和BP神经网络算法优良的分类映射能力,提出了面向细分客户群的基于粗糙BP神经网络客户群特征与服务项目映射模型。本文将分析客户特征,运用粗糙集理论进行客户特征约简、划分等价关系、建立BP神经网络的初始拓扑结构,运用K-means算法划分客户群。通过引入粗糙集理论,改进BP神经网络算法,加快BP网络收敛的速度和逃离局部极小值点,并利用rosetta软件和Matlab编程实现面向细分客户群的客户特征与服务项目映射模型。 相似文献
2.
鉴于模糊神经网络具有良好的非线性特性、学习能力、自适应能力和抗干扰能力,本文将模糊神经网络技术引入到高速公路入口匝道控制中。提出一种基于GA和BP算法的模糊神经网络控制器,并对控制器进行了详细设计。设计过程主要分为三部分:输入输出参数的选择、模糊神经网络的结构设计以及基于GA-BP的学习算法设计。最后,使用MATLAB软件对其进行了仿真。仿真结果表明,本文提出的方法是有效的,较之基于BP的模糊神经网络控制和ALINEA控制,能更好地稳定主线交通流密度。 相似文献
3.
选取河北省某地区1998—2017年公路运量数据为例,采用BP神经网络模型进行预测并用马尔科夫链修正预测值,将公路运量实际值与BP神经网络预测值及马尔科夫链修正值作对比分析并预测了2018—2019年的公路运量数据.使用马尔科夫链修正后的BP神经网络预测模型可以将公路客运量和货运量的平均相对误差分别下降至2.07%和2.14%.修正后的模型不仅可以准确的对公路运量做出预测,而且可以为未来公路运输发展提供有利意见. 相似文献