首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
随着发动机排量的增加,发动机缸间隙随之增加、活塞窜气量相应增大、曲轴箱内气压增大、发动机温度升高、发动机内机油温度升高及机油气化程度增加等问题,这些问题均会直接或间接导致发动机废气嘴喷机油现象,使发动机各部件因缺乏机油出现异常,甚至发动机无法正常工作。改进后的曲轴箱废气循环结构,有利于防止机油从废气嘴中喷出,从而大大降低了机油的异常消耗,为保证发动机的正常工作奠定了基础。  相似文献   

2.
凸轮摇臂异常磨损的分析与试验   总被引:1,自引:0,他引:1  
从改善润滑条件和减少机油因窜气受污染的角度解决了凸轮—摇臂副异常磨损问题。在改善凸轮—摇臂副润滑条件方面,加强了机油冷却使机油温度得到控制,加大了缸头机油供油油路直径、提高了机油泵泵油能力,使凸轮—摇臂副的供油量和油压得以提高;改进活塞环和缸体结构减少窜气,加强了密封。计算及试验表明,采取这些措施后,凸轮—摇臂副异常磨损问题得到了解决。  相似文献   

3.
For realizing a premixed charge compression ignition (PCCI) engine, the effects of bio-ethanol blend oil and exhaust gas recirculation (EGR) on PM-NOx trade-off have been investigated in a single cylinder direct injection diesel engine with the compression ratio of 17.8. In the present experiment, the ethanol blend ratio and the EGR ratio were varied focusing on ignition delay, premixed combustion, diffusive combustion, smoke, NOx and the thermal efficiency. Very low levels of 1.5 [g/kWh] NOx and 0.02 [g/kWh] PM, which is close to the 2009 emission standards imposed on heavy duty diesel engines in Japan, were achieved without deterioration of the thermal efficiency in the PCCI engine operated with the 50% ethanol blend fuel and the EGR ratio of 0.2. It is found that this improvement can be achieved by formation of the premixed charge condition resulting from a longer ignition delay. A marked increase in ignition delay is due to blending ethanol with low cetane number and large latent heat, and due to lowering in-cylinder gas temperature on compression stroke based on the EGR. It is noticed that smoke can be reduced even by increasing the EGR ratio under a highly premixed condition.  相似文献   

4.
The spray characteristics of a 6-hole injector were examined in a single cylinder optical direct injection spark ignition engine. The effects of injection timing, in-cylinder charge motion, fuel injection pressure, and coolant temperature were investigated using the 2-dimensional Mie scattering technique. It was confirmed that the in-cylinder charge motion played a major role in the fuel spray distribution during the induction stroke while injection timing had to be carefully considered at high injection pressures during the compression stroke to prevent spray impingement on the piston.  相似文献   

5.
The first firing cycle is very important during cold-start for all types of spark ignition engines. In addition, the combustion characteristics of the first firing cycle affect combustion and emissions in the following cycles. However, the first-cycle fuel-air mixing, combustion and emissions generation within the cylinder of a two-stage direct-injection (TSDI) engine during cold start is not completely understood. Based on the total stoichiometric air-fuel ratio and local richer mixture startup strategy, the first-cycle firing and combustion characteristic at cold start were investigated in a two-stage direct injection (TSDI) gasoline engine. In addition, the effects of the first injection timing, second injection timing, 1st and 2nd fuel injection proportion and total excess air ratio on the in-cylinder pressure, heat release rate and accumulated heat release were analyzed on the basis of a cycle-by-cycle analysis. It is shown that a larger 2nd fuel injection amount and later 2nd injection timing are more beneficial to the firing of the first cycle in the case of a total excess air ratio of 1.0. The optimum 1st and 2nd injection timing fuel injection proportions are 120°CA ATDC during the intake stroke, 60°CA BTDC during the compression stroke and 1:1. In addition, the firing boundary is a 2nd injection timing later than 90°CA BTDC during the compression stroke in the case of the 1st injection timing from 60°CA to 180°CA ATDC during an intake stroke and involves a 1st and 2nd fuel injection proportion of 1:1 and an excess air ratio of 1.0. The study provides a detailed understanding of cold-start combustion characteristics and a guide for optimizing the reliable first-cycle firing at cold start.  相似文献   

6.
刘国良 《隧道建设》2019,39(Z1):80-87
目前有关混凝土结构耐久性设计大多是依据完整混凝土的研究,实际的混凝土结构多是带有裂缝的多相复合材料,这在一定程度上高估了混凝土结构的服役寿命。通过化学滴定法测量混凝土中自由氯离子含量,系统研究锂渣的掺量、荷载大小、裂缝宽度对自由氯离子时空分布的影响,并根据Fick第二定律计算氯离子的扩散系数。结果表明: 在硫酸盐与氯盐混合溶液中,自由氯离子含量显著降低,硫酸根离子能够有效减缓氯离子在混凝土中的传输; 掺加20%锂渣能够减小氯离子在混凝土中的传输速率; 混凝土中的氯离子传输速率随着荷载和裂缝宽度的增加而增加。  相似文献   

7.
以发动机缸套-活塞环摩擦副为对象,研究润滑表面粗糙度、润滑油的变黏度效应以及气缸套圆周方向的形变等因素对润滑状态的影响。运用三维瞬态平均Reynolds方程与微凸体接触模型,建立缸套-活塞环三维瞬态动压润滑模型,并使用Fortran语言编制了润滑状态计算程序,得出行程内的最小油膜厚度、压力分布、摩擦力等曲线。结合实际工况对计算结果进行分析,表明在活塞环圆周方向上的油膜压力及油膜厚度分布都是不均匀的,有明显变化;在压缩冲程上止点附近,微凸体摩擦力数倍于流体摩擦力,是引起摩擦磨损的主要原因。  相似文献   

8.
In an HLA (hydraulic lash adjuster) piston engine, “pump up” can occur when a valve is opened by the HLA when it should be closed. HLA pump up is more frequently encountered with exhaust valves than with intake valves. When HLA pump up in occurs in the exhaust valve, exhaust gas from the exhaust manifold enters the cylinder on the intake stroke, and fresh air-fuel mixture exits through the exhaust manifold on the compression stroke and is burned in the catalyst, causing partial burning, misfire, catalyst melting and power drop. HLA pump up occurs when the force on the valve from the HLA is higher than the force on the HLA from the valve. HLA pump up is related to design parameters, such as oil pressure, rocker ratio, spring load, spring surge, and both intake and exhaust valve timing. In this study, valve lift and load on a roller finger follower were measured at varying engine firing conditions to evaluate HLA pump up. The results indicated that effective measures to reduce HLA pump up include a higher rocker ratio, a lower oil supply pressure to the HLA, a higher spring installation load and a lower spring surge.  相似文献   

9.
首先采用进气道稳流试验和数值模拟方法对两款柴油机进气道的稳态流动进行研究对比,然后利用Converge软件对两款柴油机在标定工况下的进气和压缩过程进行了瞬态数值模拟研究,并对该过程中各个时刻的缸内和燃烧室内涡流运动通过无量纲参数瞬态涡流比来进行分析。结果表明,柴油机实际工作过程中进气道在气门小开度及中等开度下形成涡流的能力对压缩终了时燃烧室内的涡流强弱有很大影响。现有的稳态评价方法不足以体现这一特征,稳态评价方法有待改进。  相似文献   

10.
研究了油介质及无油条件下纸基摩擦材料中纤维含量和树脂含量对压缩回弹性能的影响。结果表明,在油介质和无油条件下,芳纶浆粕和树脂含量的增加将导致纸基材料压缩率降低和回弹率升高;树脂含量对材料压缩率影响较大;纤维含量对材料回弹率影响较大。混杂加入纸浆纤维后,随着纤维含量的增加或树脂含量的减少,材料压缩率上升,回弹率出现极大值。在油介质和无油条件下,纤维含量和树脂含量对压缩回弹性能影响规律基本相同。  相似文献   

11.
利用CFD三维数值模拟软件模拟了1台缸内直喷汽油机的进气及压缩过程,分析比较了不同最大气门升程及进气正时下缸内流场的变化规律。结果表明:减小最大气门升程可以使进气行程中缸内气体的速度及湍动能显著增加,但在压缩末期的滚流比要略小;在小气门升程下,进气门早开或者晚开都会使得进气过程的湍动能显著增加,在距上止点5mm,10 mm,15 mm的3个横截面上,早开和晚开进气门会使最大平均湍动能分别增加28.29%和43.47%,20.7%和40.81%,23.07%和49.58%,但在压缩后期间,进气门早开或者晚开时对缸内的平均湍动能影响不大;在小气门升程下,进气门的开启时间对压缩末期湍动能的分布有较大的影响,早开或者晚开进气门会使缸内的湍动能趋于一致。  相似文献   

12.
《JSAE Review》1998,19(1):52-53
The piston friction force increases in the latter half of the compression stroke where the EGR system is activated, while the force is decreased at each stroke center. This is due to the soot contained in the EGR gas. Although tho reduction of piston friction force at the stroke center reduces the piston friction loss, the increase of friction force in the latter half of compression stroke is caused by the friction coefficient, which becomes higher at this point. Hence it can be anticipated that wear on the piston rings and cylinders would increase accordingly. The change in piston friction force characteristics with the mixture of soot is quite an interesting phenomenon, and further studies on this phenomenon, are expected.  相似文献   

13.
Extensive usage of automobiles has certain disadvantages and one of them is its negative effect on environment. Carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), sulphur dioxide (SO2) and particulate matter (PM) come out as harmful products during incomplete combustion from internal combustion (IC) engines. As these substances affect human health, regulatory bodies impose increasingly stringent restrictions on the level of emissions coming out from IC engines. This trend suggests the urgent need for the investigation of all aspects relevant to emissions. It is required to modify existing engine technologies and to develop a better after-treatment system to achieve the upcoming emission norms. Diesel engines are generally preferred over gasoline engines due to their undisputed benefit of fuel economy and higher torque output. However, diesel engines produce higher emissions, particularly NOx and PM. Aftertreatment systems are costly and occupy more space, hence, in-cylinder solutions are preferred in reducing emissions. Exhaust gas recirculation (EGR) technology has been utilized previously to reduce NOx. Though it is quite successful for small engines, problem persists with large bore engines and with high rate of EGR. EGR helps in reducing NOx, but increases particulate emissions and fuel consumption. Many in-cylinder solutions such as lower compression ratios, modified injection characteristics, improved air intake system etc. are required along with EGR to accomplish the future emission norms. Modern combustion techniques such as low temperature combustion (LTC), homogeneous charge compression ignition (HCCI), premixed charge compression ignition (PCCI) etc. would be helpful for reducing the exhaust emissions and improving the engine performance. However, controlling of autoignition timing and achieving wider operating range are the major challenges with these techniques. A comprehensive review of diesel engine performance and emission characteristics is given in this paper.  相似文献   

14.
天然气汽车使用中存在的问题及对策   总被引:3,自引:0,他引:3  
阐述了天然气汽车功率下降和早期磨损的原因。介绍了提高天然气汽车功率的措施,即提高发动机的充气系数,适当提高发动机的压缩比及使用专用天然气汽车发动机润滑油。试验表明,使用专用发动机润滑油对提高发动机功率和防止早期磨损具有显效果。  相似文献   

15.
In-cylinder charge density at top dead center is an important parameter of diesel engines and is influenced by intake pressure, intake temperature, and compression ratio. The effects of charge density on fuel spray, combustion process, and emissions were investigated by using a constant volume bomb and a heavy-duty diesel engine. Spray development resistance increased with the increase of the charge density in the constant volume bomb. It was found that short spray penetration was accompanied by a large spray cone angle in the former stage with high charge density. However, the equivalence ratio was lowered and the degree of homogeneity of the mixture was increased in the later stage owing to the rapid interaction of fuel and gas at a high mixing rate. Combining the first law of thermodynamics and the second law of thermodynamics for analysis, as the charge density increased, the gross indicated thermal efficiency (ITEg) was improved. However, pumping loss had to be considered with higher charge density. Under this condition, the brake thermal efficiency (BTE) trend was increased initially and decreased subsequently. Under high-load operation (1200 r/min BMEP, 2.0 MPa), the minimum charge density value of 44.8 kg/m3 was found to be reasonable. This charge density was suitable for combustion and brought about minimum exhaust energy and trade-off emissions. Moreover, by analyzing two operation conditions in terms of the maximum BTE with the Miller and the conventional cycles, compression temperature and combustion temperature were reduced in the Miller cycle with the charge density 44.8 kg/m3. A high Cp/Cv could improve the cylinder exergy/power conversion process by its positive effect of increasing the specific heat ratio. Owing to the interaction between a high Cp/Cv and exergy loss to heat transfer, the condition with the minimal charge density could produce more piston work.  相似文献   

16.
In order to solve the problem of slow flame propagation in a spark-ignition engine fueled with compressed natural gas (CNG), the influence of in-cylinder flows on combustion process was investigated in CA6SE3-21E4N CNG-engine by means of numerical simulation and experiment. The status of in-cylinder flows from intake to expansion stroke was described by computational fluid dynamic tool, which revealed that the in-cylinder flows were one of the main reasons of slow burning rate. Therefore, a special-shaped combustion chamber called Cross was used to improve the in-cylinder flows. The results showed that peak turbulent kinetic energy of Cross was 43.9% higher than that of original combustion chamber called Cylinder during the late compression period at 1450 rpm 100% load. The combustion parameters, brake specific fuel consumption (BSFC) and regulated emissions were obtained by means of experiment. At 1450rpm 25%, 50%, 75% and 100% load conditions, the ignition delay of Cross was longer than that of Cylinder, moreover, the Cross produced averagely 5.75°CA shorter combustion duration. The BSFC of Cross was on an average of 4.3% reduction at 1450 rpm as well as the HC and CO emissions were reduced whereas the NOx emissions were significantly increased.  相似文献   

17.
基于NVO策略的CAI工质分层特性的模拟研究   总被引:1,自引:1,他引:0  
应用通用流体计算软件STAR-CD建立了可控自燃(CAI)发动机模型,重点分析了负气门重叠(NVO)策略10°CA BTDC时工质的分层特性。研究了不同配气定时以及不同气门升程工质分层程度的变化规律以及影响因素,对自燃着火区域进行了统计分析。计算结果表明:随着进气门开启(IVO)时刻的逐渐推迟,工质分层程度增强,自燃着火区域体积变大;随着气门升程的逐渐变大,工质分层程度增强,自燃着火区域体积变大;工质分层程度主要受进气门关闭(IVC)时刻总湍流动能值的影响。总湍流动能值越大,混合越剧烈,压缩末期工质均匀性增强,分层程度减弱;压缩末期自燃着火区域体积的变化趋势与工质分层程度的变化趋势相同。  相似文献   

18.
通过对世界上现有产品进行统计分析,阐述了车长与发动机排量、发动机缸径尺寸与排量、发动机缸径尺寸与发动机结构形式、发动机行程与缸径、发动机压缩比和发动机排量的统计关系。简述了凸轮轴与气门的布置特征。指出,对于任何结构型式的发动机,采用双顶置凸轮轴的布置特征占绝对优势;多点气道喷射发动机是现在市场车型的主流,但直喷加增压是技术发展方向。概述了发动机的性能特征及目前水平。  相似文献   

19.
Homogeneous charge compression ignition (HCCI) engines have the potential to raise the efficiency of reciprocating engines during partial load operation. However, the performance of the HCCI engine at high loads is restricted by severe knocking, which can be observed by the excessive pressure rise rate. This is due to the rapid combustion process occurring inside the cylinder, which does not follow the flame propagation that is seen in conventional engines. In this study, a low compression ratio of 9.5:1 for a gasoline engine was converted to operate in HCCI mode with the goal being to expand the stable operating region at high loads. Initially, pure n-heptane was used as the fuel at equivalence ratios of 0.30 to 0.58 with elevated intake charge temperatures of 180 and 90 °C, respectively. The n-heptane HCCI engine could reach a maximum performance at an indicated mean effective pressure (IMEP) of 0.38 MPa, which was larger than the performance found in the literature. To reach an even higher performance, a dual-fuel system was exploited. Methanol, as an anti-detonant additive, was introduced into the intake stream with various amounts of n-heptane at fixed equivalence ratios in the range of 0.42 to 0.52. It was found that the methanol addition cooled the mixture down prior to combustion and resulted in an increased coefficient of variation (COV). In order to maintain stable combustion and keep the pressure rise rate below the limit, the intake charge temperature should be increased. Introduction of 90% and 95% (vol/vol) hydrous methanol showed a similar trend but a lower thermal conversion efficiency and IMEP value. Therefore, a dual fuel HCCI engine could maintain a high thermal conversion efficiency across a wide load and enhance a 5% larger load compared to a pure n-heptane-fuelled HCCI engine. The hydrocarbon (HC) and carbon monoxide (CO) emissions were lower than 800 ppm and 0.10%, respectively. They were less at higher loads. The nitrogen oxides (NO x ) emissions were below 12 ppm and were found to increase sharply at higher loads to a maximum of 23 ppm.  相似文献   

20.
发动机停机后曲轴停止相位的研究   总被引:1,自引:0,他引:1  
针对发动机在停机过程中由于缸内气体压力的作用出现的曲轴反转现象,研究发动机停机后曲轴停止的位置对于缸内直喷汽油机实施起动—停止控制策略的重要意义。在Jetta1.6 L发动机上的研究结果表明:发动机停机后处于压缩行程的活塞停在80°CA BTDC的概率较大,约占50%;发动机是否发生反转主要取决于转动动能衰减到0时缸内气体负力矩的大小;采用两个具有一定相位差的光电传感器可以判断曲轴是否反转并检测停机后曲轴的位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号