首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.  相似文献   

3.
Road Vehicle Suspension System Design - a review   总被引:8,自引:0,他引:8  
Based mainly on English language literature, information relating to the design of automobile suspension systems for ride comfort and control of wheel load variations for frequencies below body structure resonances is reviewed. The information is interpreted in the context of vehicles which travel through a wide speed range on roads of markedly differing quality, which do so carrying different loads and which are required to possess good handling qualities.

Sections are devoted to describing road surfaces, modelling vehicles and setting up performance criteria, and to passive, active, semi-active and slow-active system types. Methods for deriving active system control laws are outlined. Strengths and weaknesses of the various systems are identified and their relative performance capabilities and equipment requirements are discussed. Attention is given to adaptation of the suspension or control system parameters to changing conditions. Remaining research needs are considered.  相似文献   

4.
SUMMARY

Based mainly on English language literature, information relating to the design of automobile suspension systems for ride comfort and control of wheel load variations for frequencies below body structure resonances is reviewed. The information is interpreted in the context of vehicles which travel through a wide speed range on roads of markedly differing quality, which do so carrying different loads and which are required to possess good handling qualities.

Sections are devoted to describing road surfaces, modelling vehicles and setting up performance criteria, and to passive, active, semi-active and slow-active system types. Methods for deriving active system control laws are outlined. Strengths and weaknesses of the various systems are identified and their relative performance capabilities and equipment requirements are discussed. Attention is given to adaptation of the suspension or control system parameters to changing conditions. Remaining research needs are considered.  相似文献   

5.
Summary A control scheme for emergency braking of vehicles is designed. The tire/road friction is described by a LuGre dynamic friction model. The control system output is the pressure in the master cylinder of the brake system. The controller utilizes estimated states for a feedback control law that achieves a near maximum deceleration. The state observer is designed using linear matrix inequality (LMI) techniques. The analysis shows that using the wheel angular speed information exclusively is not sufficient to rapidly estimate the velocity and relative velocity, due to the fact that the dynamical system is almost unobservable with this measurement as output. Findings are confirmed by simulation results that show that the estimated vehicle velocity and relative velocity converge slowly to their true values, even though the internal friction state and friction parameters converge quickly. The proposed control system has two main advantages when compared with an antilock braking system (ABS): (1) it produces a source of a priori information regarding safe spacing between vehicles that can be used to increase safety levels in the highway; and (2) it achieves a near optimal braking strategy with less chattering.  相似文献   

6.
Summary A control scheme for emergency braking of vehicles is designed. The tire/road friction is described by a LuGre dynamic friction model. The control system output is the pressure in the master cylinder of the brake system. The controller utilizes estimated states for a feedback control law that achieves a near maximum deceleration. The state observer is designed using linear matrix inequality (LMI) techniques. The analysis shows that using the wheel angular speed information exclusively is not sufficient to rapidly estimate the velocity and relative velocity, due to the fact that the dynamical system is almost unobservable with this measurement as output. Findings are confirmed by simulation results that show that the estimated vehicle velocity and relative velocity converge slowly to their true values, even though the internal friction state and friction parameters converge quickly. The proposed control system has two main advantages when compared with an antilock braking system (ABS): (1) it produces a source of a priori information regarding safe spacing between vehicles that can be used to increase safety levels in the highway; and (2) it achieves a near optimal braking strategy with less chattering.  相似文献   

7.
Preview Estimation and Control for (Semi-) Active Suspensions   总被引:3,自引:0,他引:3  
An active suspension with preview is tested for rounded pulses and a stochastic road surface, and is compared to a passive suspension. The spectacular performance improvement obtained for a step function as road surface is not achieved but the improvement is still significant. The frequency response of the active suspension is determined for comparison with some suspension systems found in literature

An observer to reconstruct the preview information is presented. No model of the road surface is needed. From simulations, it appears that the observer reconstructs both deterministic and stochastic road surfaces satisfactory. However, the influence of measurement noise is not reduced sufficiently.  相似文献   

8.
SUMMARY

An active suspension with preview is tested for rounded pulses and a stochastic road surface, and is compared to a passive suspension. The spectacular performance improvement obtained for a step function as road surface is not achieved but the improvement is still significant. The frequency response of the active suspension is determined for comparison with some suspension systems found in literature

An observer to reconstruct the preview information is presented. No model of the road surface is needed. From simulations, it appears that the observer reconstructs both deterministic and stochastic road surfaces satisfactory. However, the influence of measurement noise is not reduced sufficiently.  相似文献   

9.
Semi-active Damping with an Electromagnetic Force Generator   总被引:1,自引:0,他引:1  
The main shortcoming of vehicle suspension systems is the amplification of input vibrations at the resonant frequency. A non-amplifying suspension system with a semi-active damping is being developed. The use of an electronically controlled rotational damper has been studied theoretically. A new sprung seat is being designed for the improvement of the working conditions for drivers of road and terrain vehicles.  相似文献   

10.
Optimal design of an active suspension system for road vehicles can be solved using LQR techniques. Such a problem is equivalent, in the frequency domain, to determine the state feedback gain matrix that minimizes the H2 norm of a suitable transfer matrix.

A passive suspension system can be seen as the physical realization of a suitable state feedback law whose gains are function of the system parameters. This law, and thus the characteristic elements of the passive suspension, can be determined as an approximation of the H2 optimal solution. This methodology allows one to choose the best controller from a constrained subset (i.e., all possible passive suspensions of a particular form) of all possible controllers.  相似文献   

11.
Road roughness and surface texture are known to affect tire rolling resistance; however, little emphasis has been placed on the consequent changes in total vehicle energy dissipation due to road roughness. Thus, tire rolling resistance, in isolation from vehicle contributed losses such as dissipation in the suspension, appears to be a weakness in present evaluation procedures as they relate to fuel economy and pollution level testing: Recent work by Funfsinn and Korst has shown that substantial and measurable increases in energy losses occur for vehicles traveling on rough roads. The present investigation uses vehicle axle accelerations as a means of examining various road surfaces. Correlation with computer simulations has allowed the development of a deterministic road roughness model which permits the prediction of energy dissipation in both the tire and suspension as functions of road roughness, tire pressure, and vehicle speed. Comparison to the experiments of Korst and Funfsinn results in good agreement and shows that total rolling loss increases of up to 20 percent compared to ideal smooth roads are possible. The aerodynamic drag coefficient is also found to increase while driving on rough roads.  相似文献   

12.
SUMMARY

Road roughness and surface texture are known to affect tire rolling resistance; however, little emphasis has been placed on the consequent changes in total vehicle energy dissipation due to road roughness. Thus, tire rolling resistance, in isolation from vehicle contributed losses such as dissipation in the suspension, appears to be a weakness in present evaluation procedures as they relate to fuel economy and pollution level testing: Recent work by Funfsinn and Korst has shown that substantial and measurable increases in energy losses occur for vehicles traveling on rough roads. The present investigation uses vehicle axle accelerations as a means of examining various road surfaces. Correlation with computer simulations has allowed the development of a deterministic road roughness model which permits the prediction of energy dissipation in both the tire and suspension as functions of road roughness, tire pressure, and vehicle speed. Comparison to the experiments of Korst and Funfsinn results in good agreement and shows that total rolling loss increases of up to 20 percent compared to ideal smooth roads are possible. The aerodynamic drag coefficient is also found to increase while driving on rough roads.  相似文献   

13.
SUMMARY

Optimal design of an active suspension system for road vehicles can be solved using LQR techniques. Such a problem is equivalent, in the frequency domain, to determine the state feedback gain matrix that minimizes the H2 norm of a suitable transfer matrix.

A passive suspension system can be seen as the physical realization of a suitable state feedback law whose gains are function of the system parameters. This law, and thus the characteristic elements of the passive suspension, can be determined as an approximation of the H2 optimal solution. This methodology allows one to choose the best controller from a constrained subset (i.e., all possible passive suspensions of a particular form) of all possible controllers.  相似文献   

14.
Vehicle-Generated Road Damage: A Review   总被引:9,自引:0,他引:9  
The literature concerned with road damage caused by heavy commercial vehicles is reviewed. The main types of vehicle-generated road damage are described and the methods that can be used to analyse them are presented. Attention is given to the principal features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Also discussed are those vehicle features which, to a first approximation, can be studied without consideration of the dynamics of the vehicle, including axle and tyre configurations, tyre contact conditions and static load sharing in axle group suspensions. The main emphasis of the paper is on the dynamic tyre forces generated by heavy vehicles: their principal characteristics, their simulation and measurement, the effects of suspension design on the forces and the methods that can be used to estimate their influence on road damage. Some critical research needs are identified.  相似文献   

15.
SUMMARY

The literature concerned with road damage caused by heavy commercial vehicles is reviewed. The main types of vehicle-generated road damage are described and the methods that can be used to analyse them are presented. Attention is given to the principal features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Also discussed are those vehicle features which, to a first approximation, can be studied without consideration of the dynamics of the vehicle, including axle and tyre configurations, tyre contact conditions and static load sharing in axle group suspensions. The main emphasis of the paper is on the dynamic tyre forces generated by heavy vehicles: their principal characteristics, their simulation and measurement, the effects of suspension design on the forces and the methods that can be used to estimate their influence on road damage. Some critical research needs are identified.  相似文献   

16.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   

17.
空气悬架系统作为高档公路大客车的关键部件,已经在国外高档客车上普及,商用车上使用的比例也在迅速提升,其独特的变刚度、低振动频率、抗道路凹凸冲击等诸多优越性越来越受人们重视。目前国内没有一家企业能设计出成熟的产品,加快空气悬架的设计研发,尤其是电子控制空气悬架(ECAS)的研发是大势所趋,谁先掌握了汽车空气悬架的开发技术,谁先开发出配置空气悬架的成熟车型,谁就掌握了今后若干年内商用车市场的先机和主动。  相似文献   

18.
This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.  相似文献   

19.
结合卡尔曼滤波器的车辆主动悬架轴距预瞄控制研究   总被引:8,自引:2,他引:8  
喻凡  郭孔辉 《汽车工程》1999,21(2):72-80
利用轴距预瞄信息,即前后轮路面输入之关系,同时结合卡尔曼滤波器作为状态估计器,本文提出了一种算法用于车辆悬架控制律的设计,根据模拟结果,研究了算法的可行性,分析了卡尔曼滤波器对状态变量的估计精度,以及轴距预瞄控制对进一步改进车辆性能的潜力。  相似文献   

20.
Suspensions play a crucial role in vehicle comfort and handling. Different types of suspensions have been proposed to address essential comfort and handling requirements of vehicles. The conventional air suspension systems use a single flexible rubber airbag to transfer the chassis load to the wheels. In this type of air suspensions, the chassis height can be controlled by further inflating the airbag; however, the suspension stiffness is not controllable, and it depends on the airbag volume and chassis load. A recent development in a new air suspension includes two air chambers (rubber airbags), allowing independent ride height and stiffness tuning. In this air suspension system, stiffness and ride height of the vehicle can be simultaneously altered for different driving conditions by controlling the air pressure in the two air chambers. This allows the vehicle’s natural frequency and height to be adjusted according to the load and road conditions. This article discusses optimization of an air suspension design with ride height and stiffness tuning. An analytical formulation is developed to yield the optimum design of the new air suspension system. Experimental results verify the mathematical modeling and show the advantages of the new air suspension system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号