首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
制动系统是高速列车关键技术之一。随着列车运行时速的提高,采用组合制动方式来保证高速列车紧急制动时达到规定的制动距离成为常见的做法。近年来,传统机械制动方式日趋成熟,因此,不依赖轮轨间黏着的非黏着制动方式越来越受到相关设计人员的重视。介绍了一种基于某型速度400km/h动车组列车开发的高速列车"蝶形"风阻制动装置,该型风阻制动装置采用小型风阻板进行空气动力制动,质量较轻,结构较简单。通过在车顶合理布置,可将风阻制动力分散于整车,提升紧急制动时的运行稳定性。阐述了其基本原理、开闭机构、响应时间等性能和技术指标,并采用计算流体力学(CFD)方法对其进行了不同工况下制动力的计算评估。  相似文献   

2.
为了改善风阻制动板制动效果,基于高速列车空气动力学建立四节编组高速列车数值仿真模型。采用FLUENT软件,通过三维、定常、可压缩Navier-Stokes方程以及k-ε两方程湍流模型,开展对风阻制动板制动力的研究。结果表明:风阻制动板在高速列车紧急制动时可以提供较大制动力。首排风阻制动板提供的制动力最大。首排制动板位于头车流线型车身尾端制动效果最佳。随着首排制动板位置的推后,制动力先减小,紧接着保持不变,然后缓慢降低,最后趋于稳定;同时头车的阻力以及列车的总阻力会持续降低,最后趋于稳定。首排制动板的最佳位置是头车流线型车身尾端。  相似文献   

3.
通过CFD仿真分析研究了列车不同运行速度、不同风阻制动装置布置方案下制动板提供的制动力及流场特性,并得出制动板提供的制动力与列车运行速度、制动板数量之间的关系。  相似文献   

4.
风阻制动作为一种非黏着制动方式,可在高速条件下为列车提供较大的制动力。为提高风阻制动装置的可靠性,文章对自主设计的高速列车风阻制动装置,从定性和定量的角度进行了故障树分析,并根据分析得到的故障树最小割集和重要度,对风阻制动装置进行了改进设计。改进后的风阻制动装置单点故障减少,可靠性提高。文章所采用的分析方法能为风阻制动装置的开发提供持续优化改进的依据。  相似文献   

5.
新干线小型分散式风阻制动装置的开发   总被引:1,自引:0,他引:1  
介绍了采用风阻板的小型空气动力制动系统。阐述了风阻板的形状、布置及其开闭机构,并设计和制造了全尺寸空气动力制动装置样机。  相似文献   

6.
随着高速列车运行速度的提高,采用包括风阻制动技术在内的组合制动方式以保证高速列车紧急制动时达到规定的制动距离成为热点研究方向。文章针对目前研发中的新型分布式风阻制动装置,采用计算流体力学(CFD)方法对安装风阻制动装置的列车进行了制动力计算,并将相关结果作为输入参数,评估不同布置工况下风阻制动装置对高速列车制动距离的影响。依据评估结果,确定了风阻制动装置的适用速度范围、使用特点及效果。  相似文献   

7.
为得到第1排风翼板对空气动力制动能力的影响规律,结合某高速列车车型,采用流体仿真软件FLUENT研究第1排风翼板高度和横向间距变化对后排风翼板的干扰规律。结果表明:第1排风翼板的高度变化对后排风翼板的流场影响较小,同时随着其高度的降低,后面2排风翼板产生的制动力变化不大,各排风翼板可提供的总制动力大幅降低;随着第1排风翼板横向间距逐渐增大,第2、3排风翼板提供的制动力不断增大,当第1排风翼板横向间距为400mm时,各排风翼板产生的总制动力值达到最大,空气动力制动能力有明显的提升。最后通过风洞试验验证了采用Realizable k-ε双方程模型模拟带风翼板高速列车外流场湍流的可靠性和计算精度。  相似文献   

8.
本文应用LBM(Lattice Boltzmann Method)数值计算方法对列车空气动力制动在不同速度下风翼提供的制动力和在相同列车速度下风翼的形状选择、位置安装以及不同安装数量等情况进行了研究、计算和分析.计算结果为工程设计人员提供了有力的参考依据.  相似文献   

9.
电磁涡流制动是磁浮列车安全紧急状况下的重要保障措施。本文通过解析法建立涡流制动过程感应板的温升模型以及温度对涡流制动力的影响作用模型,并结合具体参数分析温升情况和涡流制动力受影响情况。首先,根据磁路定律推导出涡流制动力与列车速度、励磁电流、气隙、电导率和磁导率之间的数学关系式,并从热平衡方程式出发建立制动过程中感应板的温升模型;再以电导率和磁导率为纽带使涡流制动力与感应板温度相关联,据此对涡流制动力进行温度修正;最后,将温度修正后的涡流制动力与试验得到的结果进行对比,从而验证了模型的有效性。  相似文献   

10.
运用ANSYS软件建立某大跨度铁路斜拉桥梁轨相互作用有限元模型,进行列车制动力作用下的梁轨动力响应分析,研究梁轨相对位移及钢轨制动附加力的动力放大效应以及制动力作用位置、制动距离、斜拉桥结构体系等参数对梁轨动力响应的影响。结果表明:列车制动过程中,钢轨制动附加力峰值产生于斜拉桥梁端;斜拉桥结构在列车制动作用下的动力放大效应并不明显;制动力作用位置、斜拉桥结构体系对梁轨动力响应峰值有较大的影响,而制动距离对动力响应计算结果的影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号