共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
朱文铜 《石家庄铁道学院学报》2014,(2):79-82
在分析铁路货运量预测方法的基础上,针对标准BP神经网络的不足,提出改进的BP神经网络预测模型。首先,利用动态陡度因子来改变激励函数的陡峭程度,以此来得到更好的激励函数响应特征以及更好的非线性表达能力;其次,利用附加动量因子,通过对以前经验的积累,既降低了神经网络对误差曲面的局部细节敏感特性,又较好的遏制了神经网络易于限于局部最小的缺陷;最后,采取改变学习率的方法,给定一个较大的学习率初始值,在学习的过程中学习率不断减小,网络最终趋于稳定。改进BP算法既可以得到更优的解,还能够缩短训练时间。利用全国铁路货运量的相关数据对改进BP神经网络进行了验证。验证的结果表明,改进的BP神经网络预测模型在相对误差和迭代次数上有较大改善,对铁路的货运量预测很有效。 相似文献
3.
在分析货运量影响因素的基础上,利用BP神经网络建立新疆货运量时间序列预测网络结构模型.利用1995~2006年新疆货运量历史数据,对模型进行训练和拟合,再选用2007 ~2008年的历史数据作为网络模型检验样本,同时采用移动平均法、指数平滑法对新疆货运量进行预测,并对预测结果作对比分析.研究表明,采用BP神经网络预测新... 相似文献
4.
5.
为了有效地进行交通货运量预测,通过对货运量影响因素的分析,建立了关于货运量影响因素的层次结构模型,并根据该模型构建基于RBF神经网络的货运量预测方法。用我国1985~2004年的货运量对该神经网络进行训练和预测,同时与BP神经网络预测方法进行比较。结果表明,该方法具有更快的运算速度和更高的精度,具有很好的预测能力和应用价值。 相似文献
6.
分析各种货运量预测方法的优缺点,结合公路交通发展的特点,特别是公路货物需求的基础上,选用回归分析法、灰色预测法,对江西省公路货运量进行预测分析。通过灰色系统模型和线性回归的方法对江西省近9年的相关数据运用MATLAB进行分析,预测出江西省未来5年的公路货运量。 相似文献
7.
神经网络模型预测运输货运量 总被引:19,自引:0,他引:19
从交通运输需求的角度描绘了交通运输需求与国民经济的一些主要经济变量的相关关系,基于这些相关关系建立了交通运输需求预测的神经网络模型,利用误差反向传播算法实现了由这些因素到运输系统需求的复杂映射。并进行了实例验证分析。 相似文献
8.
利用黑龙江省公路货运量时间序列信息,基于多种模型对黑龙江省公路货运量进行组合预测,为管理部门的决策提供依据。 相似文献
9.
阐述了自适应模糊推理系统(Adaptive Network—based Fuzzy Inference System,ANFIS)网络,提出了水运货运量预测的ANFIS网络预测模型.以MATLAB为工具,以1985~2001年我国水运货运量为训练样本;2002年我国水运货运量为校验样本,对网络进行训练后,预测了2003~2010年我国水运货运量.估算结果表明,同BP神经网络模型相比,此模型具有更高的准确性. 相似文献
10.
基于BP神经网络的浙江省公路运输量的预测 总被引:3,自引:0,他引:3
本文在对浙江省公路运输量时序分析的基础上利用BP神经网络进行预测,得到了精确度很高的预测结果,改变了过去一直使用灰色预测、回归预测、指数平滑法等方法的局面,为浙江省公路运输量的预测提供了新方法。 相似文献
11.
��·������Ԥ��ĸĽ�BP�����緽�� 总被引:6,自引:0,他引:6
铁路货运量与其影响因素之间存在着复杂的非线性关系,传统的BP神经网络模型能对非线性系统进行很好的拟合,但模型的预测能力不强。通过单位根检验,可知铁路货运量及其影响因素的时序列数据是非平稳的。本文通过分析BP神经网络的传递函数对非平稳时间序列预测的不利影响,提出用差分法对输入数据进行预处理,在此基础上建立了铁路货运量预测的改进BP神经网络模型,并通过实例计算说明了这种改进BP神经网络方法对提高铁路货运量预测精度的有效性,最后利用该模型对2006—2O1O年的铁路货运量进行了预测。 相似文献
12.
����BP����������Ԥ��ģ�ͼ����ڹ�·������Ԥ���е�Ӧ�� 总被引:5,自引:0,他引:5
组合预测方法与单一预测方法相比可以提高预测的精度和稳定性,因此得到广泛的应用。本文首先概述了组合预测的基本思想,然后介绍了基于BP神经网络的组合预测模型,并以吉林省公路货运量为例给出计算实例,实例的预测结果非常理想,同时也用数理统计的方法证明了此模型的适用性。统计分析和实践都证明此模型的可行性和适用性,说明将此模型用于公路交通运输量预测是有效可行的。 相似文献
13.
李萍 《兰州交通大学学报》2014,(3):203-207
针对于目前已有铁路货运量预测方法的缺陷与不足,提出基于遗传算法和神经网络的混合预测模型对铁路货运量的预测方法进行改进优化,目的保证其预测精度.首先引用灰色关联分析法,以此来确定全国铁路货运量与其主要影响因子之间的关联度,然后按照其关联度在标准值之上的关联因子,建立GA-BP神经网络预测模型.最后通过实例分析表明,此模型预测精度及推广能力均优于传统的预测方法,从而证明该方法的可行性和有效性. 相似文献
14.
基于BP神经网络的预测模型 总被引:1,自引:0,他引:1
耿悦敏 《广东交通职业技术学院学报》2007,6(4):46-48
预测是数据分析的基本任务之一,传统方法对非线性数据的预测不易找到简单而有效的模型,神经网络的产生为处理非线性问题提供了一条新途径。文中运用智能计算技术建立了BP网络模型。通过珠江三角洲天河水文站的水位预测结果表明,BP网络模型有较好的泛化能力,预测更为可靠。 相似文献
15.
为了定量预测多个外部因素影响下的货运量,建立了混合径向基神经网络模型.该模型以径向基神经网络为模型主体,并结合二阶振荡粒子群优化算法和灰色预测方法构成混合预测模型.该神经网络模型的参数设置更加简便,收敛速度更快.实例预测得到的结果相比较其他预测方法绝对误差值更小,误差变化范围更加稳定,证实了该神经网络模型的有效性,表明了其在多因素影响下的货运量预测中具有很好的适用性. 相似文献
16.
基于BP神经网络的卷烟零售量价控制研究 总被引:1,自引:0,他引:1
针对烟草营销中卷烟货源投放总量难以准确控制的问题,通过分析各区域货源投放量、实际销售量与零售价格之间的相互关系,采用BP神经网络预测,建立了卷烟零售量价控制模型,据此来调控各品类的投放量,测试结果表明有较好的预测准确度。 相似文献
17.
针对城市道路交通系统的复杂性和随机性,应用灰色理论和神经网络知识,建立了基于灰色理论和BP神经网络的城市道路交通量GM-BP神经网络预测模型.随后运用该预测模型对城市道路的交通量进行预测,预测结果表明:GM-BP神经网络预测模型所得预测结果平均相对误差为1.17%,与单一的灰色新陈代谢预测模型相比具有预测精度高的优点. 相似文献