首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics and interannual variability of the deep water masses in the North and Central Aegean Sea are being investigated through the data sets of the Hellenic Navy Hydrographic Service (HNHS) and the MEDATLAS 1997 project. In the period between 1987 and 1993, the densest deep water in the Mediterranean has been produced in the Aegean Sea (with σθ densities reaching up to 29.6 kg/m3), contributing to what has been called the Eastern Mediterranean Transient. The examination of time series of mean integrated values of θ, S and σθ below the depth of 500 dbar reveals the significant deep water density increase after 1987 in all of the deep basins in the area. Data suggest that the density increase of 1987–1988 is mainly attributed to a temperature drop, while in 1993, an even more intense density increase is observed, characterized this time by an abrupt salinity increase. We assume that the increased salinity necessary to produce deep water masses with the observed characteristics was not locally produced but rather advected from the Levantine through the South Aegean. After 1993, no new deep water formation episodes have been observed. A series of ΘS diagrams derived from HNHS CTD casts covering the period between 1993 and 2000, depict the different characteristics of the deep water masses in the area. As 1993 marks the end of the formation period, observed differences between basins in that year must be attributed to different deep water formation sites. Thereafter, the stagnating deep water in the North and Central Aegean basins has been slowly gaining buoyancy by losing salt and gaining heat. The rate at which this phenomenon takes place varies between different deep basins. It is suggested that these variations are linked to the different volumes of each basin as well as to the general circulation features of the Aegean Sea.  相似文献   

2.
This work aims at studying the geochemistry and mineralogy of Milos bay surface sediments. The bay forms an enclosed marine area, supplied totally by volcanic formations. Totally 16 samples were subjected to sedimentological (grain size), mineralogical (microscope examination and X-ray diffraction of the bulk sample and the pelitic fraction), and geochemical analyses (X-ray fluorescence in the pelitic fraction). Also the carbonate content was determined. Sediments were sandy with a high carbonate content (14–58%). The dominant minerals recognized in the pelitic fraction were smectite, kaolinite and illite, followed by chlorite, quartz, calcite, Mg-calcite and feldspars. In general, element concentrations appeared to be within the normal range, except Pb and Zn, which exhibited relatively high values. The Index of Geoaccumulation Igeo was computed, in order to investigate a possible enrichment of the surface sediments in metals. The analysis revealed again high values of Igeo class for both Pb and Zn. A careful study of the area, in relation to the quality of the catchment basins petrology, lead to a non-anthropogenic origin of these high concentrations. The enrichment of the surface sediments in Pb and Zn is attributed to the weathering of several mineral deposits, pyroclastic rocks and lavas, covering almost all Milos vicinity. A study of the geochemical data correlation coefficient matrix revealed three major groups of elements: (i) the elements of detrital origin represented by Si, Al, K and a part of the metals; (ii) the carbonates group; and (iii) a Fe–Mn oxyhydroxides–oxides group, which attracts a part of Pb, Cr and Ni.  相似文献   

3.
Seasonal variability and the spatial distribution of sea surface temperatures (SST) and salinities (SSS) are reviewed, in relation to the prevailing climatological conditions, heat fluxes, water budget and general water circulation patterns. Within this context, consideration is given to: sea surface temperatures; air temperatures; precipitation; evaporation; wind speeds and directions; freshwater (mainly riverine) discharges throughout the Aegean; and the exchange of water masses with the Black Sea and eastern Mediterranean Sea. The investigation of satellite images, covering a 6-yr period (1988–1994), has enabled a synthesis of the monthly sea surface thermal distribution to be established.The climate of the Aegean Sea is characterised by annual air temperatures of 16–19.5°C, precipitation of about 500 mm yr−1 and evaporation of some 4 mm d−1. The Aegean has a negative heat budget (approximately −25 W m−2) and positive water balance (+ 1.0 m yr−1), when inflow from the Black Sea is considered. During the summer, the (northerly) Etesians are the dominant winds over the Sea.Mean monthly sea surface temperatures (SST) vary from 8°C in the north during winter, up to 26°C in the south during summer. SST depends mainly upon air temperature; there is a month's delay between the former and latter maxima. The sea surface salinity (SSS) varies also spatially and seasonally, ranging from less than 31 psu, in the north, to more than 39 psu, in the southeast; lower values (< 25 psu) occur adjacent to the river mouths. SSSs present their maximum differences during summer, whilst during winter and autumn the distribution of SSS is more uniform. The overall spatial SST and SSS distribution pattern is controlled by: distribution of the (colder) Black Sea Waters; advection of the (warmer) Levantine Waters, from the southeastern part of the Aegean; upwelling and downwelling; and, to a lesser extent, but locally important, freshwater riverine inflows.  相似文献   

4.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

5.
The Black Sea general circulation is simulated by a primitive equation model with active free surface. The forcing is seasonally variable and is based on available climatic data. The model reproduces the main features of the Black Sea circulation, including the river discharge effects on the mean sea level and the Bosphorus outflow. Model results show that the simulated sea surface elevation increases in spring over the whole sea, reaching a maximum in the Danube delta area. In the same region, a minimum is observed in winter. The amplitude of the seasonal oscillations (about 8–12 cm over the whole basin) is of the same order of magnitude as the maximum horizontal variations (about 15–18 cm between the coastal areas and the basin interior). This strong signal formed mostly by river discharges, along with the seasonal variability in the other forcing functions and the local dynamics creates a well-pronounced interannual variability. The performance of the model in simulating the seasonal and interannual variability is critically analyzed, with a special attention on the cold intermediate water formation and the circulation in the upper 150 m. The simulations demonstrate that the source of intermediate waters is on the shelf, and that the water mass in the core of cold intermediate layer changes with time as a response to the periodic forcing at sea surface. This type of variability is characterized by pronounced interannual changes, proving that important differences could exist between water mass structure in different years, even when using identical atmospheric forcings each year.  相似文献   

6.
Wave energy assessments in the Black Sea   总被引:1,自引:0,他引:1  
The present work aims to evaluate the wave energy resources in the Black Sea basin. The study is focused on the western part of the sea, which is traditionally considered as being more energetic. In order to give a first perspective of the wave climate, a medium-term wave analysis was carried out using in situ measured data. As a further step, a wave prediction system was implemented for the Black Sea. This was based on the simulating waves near-shore model, which is used for both wave generation and near-shore transformation. This methodology has the advantage that a single model covers the full scale of the modelling process. Various tests were performed considering data measured at three different locations. Special attention was paid to the whitecapping process, which is still widely considered to be the weak link in deep water wave modelling. Comparisons carried out against measured data show that the wave prediction system generally provides reliable results, especially in terms of significant wave heights and mean periods. By increasing the resolution in geographical space, the field distributions of wave energy were analysed for both high and average wave conditions. The analysis and the wave prediction system developed are a prerequisite for further investigations extended in time and with increased resolution in the near-shore direction.  相似文献   

7.
Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April–May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×102 and 1.45×105 cells/ml at the surface, between 2×103 and 1.23×105 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×102 and 3.5×102 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll-a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0–10 m) were larger in cell size than the cells at lower depths (20–60 m).  相似文献   

8.
Three surveys were carried out in anchovy spawning periods in southern Yellow Sea in May and June 2001, and June 2002. Chlorophyll a (Chl-a) concentration, bacterioplankton abundance, biomass and their variations along the zone of tidal fronts were investigated. The results showed that (1) high Synechococcus abundance distributed more often in frontal area and middle-surface layer of a stratified zone; and (2) the maximal abundance of bacteria occurred in stratified and mixed zone.  相似文献   

9.
Mixing over the steep side of the Cycladic Plateau in the Aegean Sea   总被引:2,自引:0,他引:2  
Intensive microstructure sampling over the southern slope of the Cycladic Plateau found very weak mixing in the pycnocline, centered on a thin minimum of diapycnal diffusivity with Kρ=1.5×10−6 m2 s− 1. Below the pycnocline, Kρ increased exponentially in the bottom 200 m, reaching 1 × 10− 4 m2 s− 1 a few meters above the bottom. Near-bottom mixing was most intense where the bottom slope equaled the characteristic slope of the semi-diurnal internal tide. This suggests internal wave scattering and/or generation at the bottom, a conclusion supported by near-bottom dissipation rates increasing following rising winds and with intensifying internal waves. Several pinnacles on the slope were local mixing hotspots. Signatures included a vertical line of strong mixing in a pinnacle's wake, an hydraulic jump or lee wave over a downstream side of the summit, and a ‘beam’ sloping upward at the near-inertial characteristic slope. Because dissipation rate averages were dominated by strong turbulence, ?/νN2 > 100, the effect on Kρ of alternate mixing efficiencies proposed for this range of turbulent intensity is explored.  相似文献   

10.
The response of the Black Sea mean level to atmospheric pressure (AP) and wind forcing is investigated using 5 years of TOPEX/POSEIDON (T/P hereafter) data. A coherence analysis is first applied to mean sea level and pressure to examine the validity of the inverse barometer (IB) approximation over this area. As expected, it reveals very significant deviations from an IB response attributed to the narrowness of the Bosphorus Strait and its limiting role in water exchanges. A comparison is drawn with the Mediterranean Sea case. A single basin version of the Candela analytical model [Candela, J., 1991. The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dyn. Atmos. Oceans 15, 267–300], which takes linear friction at the strait into account, is then used. The model explains a significant part of the T/P mean sea level variance (about 30%, while the IB correction only explains 5% of its variance) and provides a means to correct the altimeter data for the pressure effect much better than the standard IB effect. The response of the mean sea level to wind forcing is then analysed. Coherence analysis between sea level and along-strait wind stress (WS) reveals a significant coherence at periods ranging from 40 to 100 days, with an almost steady phase of 270°. This result is confirmed with a multiple coherence analysis (mean sea level vs. WS and AP). A plausible mechanism is a piling-up of water at the northern or southern end of the strait due to along-strait wind forcing. The associated along-strait pressure gradient would modify the barotropic flow in the strait and then the mean sea level. Using an extension of the Candela model, we show that this mechanism is consistent with T/P mean sea level observations.  相似文献   

11.
The response of the Mediterranean Sea and the various sub-basins to changes in the freshwater budget are investigated in a process-oriented study, using the POM model. The model is first integrated using values of the Nile and Ebro rivers runoff, as well as of the Dardanelles freshwater input, typical of the fifties. The model reaches a steady state representative of that existing in the Mediterranean prior to the major damming period after 90 years of integration. Then the model is integrated using the reduced river runoff values typical of the after-damming period. The additional impact of decadal scale trends in the precipitation rate as well as of intense surface cooling periods/events on the thermohaline circulation during the last 40 years were also examined. The model results show that the dramatic reduction of the Nile freshwater input and to a lesser extent the reduction of the freshwater input from the Dardanelles Straits induced a large increase in the sea surface salinity in the Aegean and Levantine basins in the late sixties/early seventies, in agreement with observations. Furthermore, the Ebro runoff reduction during the same period further enhanced the salinity increase in the Levantine basin as higher salinity surface waters of the western basin reached the eastern basin via the Atlantic Water circulation. This saltier surface layer in the vicinity of the Rhodes Gyre favoured the preconditioning for the formation of the Levantine Intermediate Water, resulting in about 40% increase of its formation rate. This in turn resulted in the production of saltier and larger amounts of deep waters in the various deep-water formation sites. According to the model, the river damming and decreased precipitation since the eighties explain about 95% of the observed salinity increase in the Western Mediterranean Deep Water over the last 40 years. The major contributor to this increase was proved to be the Nile damming. The salt increase in the surface layer is proved to be insufficient to produce alone the two climatic transient events in the deep waters of the Eastern Mediterranean in the late sixties and early nineties, respectively. Surface cooling was found to be important, resulting in large deep water formation and thus allowing the propagation of the increased surface salinity signal to the deep layers. However, model results demonstrate that the river damming played an important role in the long-term salt preconditioning of the surface/intermediate layers, thus contributing in triggering the two events.  相似文献   

12.
Copepods were sampled by a multiple opening-closing net in the eastern Weddell Sea during various seasons (late winter/early spring, summer, autumn). Total copepod biomass integrated over the upper 1000 m varied seasonally between 1.7 mg C m−3 in late winter/early spring and 3.7 mg C m−3 in autumn. After the dark season the copepods were rather evenly distributed vertically and highest biomass levels were found in the mid-water layers between about 200 m and 500 m. By contrast, especially in summer but also in autumn copepod biomass concentrated in the uppermost water layer. A total of 64 calanoid species were identified in the upper 1000 m with maximum species numbers in the deepest layer. The large calanoids Calanus propinquus, Calanoides acutus, Metridia gerlachei, Euchaeta antarctica and the small calanoid Microcalanus pygmaeus prevailed and accounted for 60–70% of total copepod biomass, while the small poecilostomatoid Oncaea and the cyclopoid Oithona species comprised about 20%. Hence, the distribution pattern of the entire copepod biomass is strongly influenced by the life cycles of a few dominant species.  相似文献   

13.
The optimal spectral decomposition (OSD) method is used to reconstruct seasonal variability of the Black Sea horizontally averaged chlorophyll-a concentration from data collected during the NATO SfP-971818 Black Sea Project in 1980–1995. During the reconstruction, quality control is conducted to reduce errors caused by measurement accuracy, sampling strategy, and irregular data distribution in space and time. A bi-modal structure with winter/spring (February–March) and fall (September–October) blooms is uniquely detected and accurately documented. The chlorophyll-a enriched zone rises to 15 m depth in winter and June, and deepens to 40 m in April and 35 m in August. The June rise of the chlorophyll-a enriched zone is accompanying by near-continuous reduction of upper layer maximum chlorophyll-a concentration.  相似文献   

14.
The satellite and in situ Sea Surface Temperature (SST) observational networks in the Baltic Sea and North Sea are evaluated based on the quality of the gridded SST products generated from the networks. A multi-indicator approach is applied in the assessment. It includes evaluation of data quality, effective data coverage, field reconstruction error and model nowcast error. The results show that the best available full-coverage SST product is generated by assimilating the SST observations to obtain a yearly mean model bias of 0.07 °C and RMSE of 0.64 °C. The effective data coverage rate is 31% by using AVHRR (Advanced Very High Resolution Radiometer) data from NOAA (National Ocean and Atmosphere Administration) satellites 12, 14 and 16. The data redundancy increases rapidly with the number of infrared sensors. Using either NOAA satellite 12 or all 3 satellites makes a small difference with regard to derived effective coverage and the ocean model nowcast error. The influence of using the in situ SST observations in the SST field reconstruction is negligibly small. Instead, the major role of in situ SST observations is in calibrating the satellite observations. To study the relative importance of data quality and data coverage, an assessment is done for two satellite products: one product is based entirely on NOAA 12 data and has larger coverage but lower quality. The other product is a subset of the SAF products (derived from NOAA 14 and 16) and has lower coverage but higher quality. Based on current monitoring, modelling and assimilation technology, the results suggest that the data quality is an important factor in further improving the quality of the gridded SST products. Recommendations are made for possible further improvements of the existing SST observational networks.  相似文献   

15.
We report on an intensive campaign in the summer of 2006 to observe turbulent energy dissipation in the vicinity of a tidal mixing front which separates well mixed and seasonally stratified regimes in the western Irish Sea. The rate of turbulent dissipation ε was observed on a section across the front by a combination of vertical profiles with the FLY dissipation profiler and horizontal profiles by shear sensors mounted on an AUV (Autosub). Mean flow conditions and stratification were obtained from a bed mounted ADCP and a vertical chain of thermistors on a mooring. During an Autosub mission of 60 h, the vehicle, moving at a speed of ~ 1.2 m s− 1, completed 10 useable frontal crossings between end points which were allowed to move with the mean flow. The results were combined with parallel measurements of the vertical profile of ε which were made using FLY for periods of up to 13 h at positions along the Autosub track. The two data sets, which show a satisfactory degree of consistency, were combined to elucidate the space–time variation of dissipation in the frontal zone. Using harmonic analysis, the spatial structure of dissipation was separated from the strong time dependent signal at the M4 tidal frequency to yield a picture of the cross-frontal distribution of energy dissipation. A complementary picture of the frontal velocity field was obtained from a moored ADCP and estimates of the mean velocity derived from the thermal wind using the observed density distribution. which indicated the presence of a strong (0.2 m s− 1) jet-like flow in the high gradient region of the front. Under neap tidal conditions, mean dissipation varied across the section by 3 orders of magnitude exceeding 10− 2 W m− 3 near the seabed in the mixed regime and decreasing to 10− 5 W m− 3. in the strongly stratified interior regime. The spatial pattern of dissipation is consistent in general form with the predictions of models of tidal mixing and does not reflect any strong influence by the frontal jet.  相似文献   

16.
A new transport model for metals (named NOSTRADAMUS) has been developed to predict concentrations and distributions of Cd, Cu, Ni, Pb and Zn in the southern North Sea. NOSTRADAMUS is comprised of components for water, inorganic and organic suspended particulate matter transport; a primary production module contributes to the latter component. Metal exchange between dissolved (water) and total suspended particulate matter (inorganic + organic) phases is driven by distribution coefficients. Transport is based on an existent 2-D vertically integrated model, incorporating a 35 × 35 km grid. NOSTRADAMUS is largely driven by data obtained during the Natural Environment Research Council North Sea Project (NERC NSP). The sensitivity of model predictions to uncertainties in the magnitudes of metal inputs has been tested. Results are reported for a winter period (January 1989) when plankton production was low. Simulated ranges in concentrations in regions influenced by the largest inflows, i.e. the NE English coast and the Southern Bight, are similar to the ranges in the errors of the concentrations estimated at the northern and southern open sea boundaries of the model. Inclusion of uncertainties with respect to atmospheric (up to ± 54%) and riverine (± 30%) inputs makes little difference to the calculated concentrations of both dissolved and particulate fractions within the southern North Sea. When all the errors associated with the inputs are included there is good agreement between computed and observed concentrations, and that for dissolved and particulate Cd, Cu and Zn, and dissolved Ni and Pb, many of the observations fall within, or are close to, the range of values generated by the model. For particulate Pb, model simulations predict concentrations of the right order, but do not reproduce the large scatter in actual concentrations, with simulated concentrations showing a bias towards lower values compared to those observed. A factor which could have contributed to observed concentrations, and which is not included in the model, is considered to be a substantial benthic input of dissolved lead during this winter period, coupled to a rapid and extensive scavenging of the dissolved lead to particles. Significant reductions in riverine and aeolian inputs of total Cd and Cu of 70% and 50%, respectively, consistent with aims of North Sea Conferences, are predicted to lead to minor decreases (~ 10%) in water column concentrations of dissolved and particulate Cd and Cu, except near river sources, where maximum reductions of ~ 30–40% may occur.  相似文献   

17.
We use hydrographic, current, and microstructure measurements, and tide-forced ocean models, to estimate benthic and interfacial mixing impacting the evolution of a bottom-trapped outflow of dense shelf water from the Drygalski Trough in the northwestern Ross Sea. During summer 2003 an energetic outflow was observed from the outer shelf ( 500 m isobath) to the  1600 m isobath on the continental slope. Outflow thickness was as great as  200 m, and mean speeds were  0.6 m s− 1 relative to background currents exceeding  1 m s− 1 that were primarily tidal in origin. No outflow was detected on the slope in winter 2004, although a thin layer of dense shelf water was present on the outer shelf. When the outflow was well-developed, the estimated benthic stress was of order one Pascal and the bulk Froude number over the upper slope exceeded one. Diapycnal scalar diffusivity (Kz) values in the transition region at the top of the outflow, estimated from Thorpe-scale analysis of potential density and measurements of microscale temperature gradient from sensors attached to the CTD rosette, were of order 10− 3−10− 2 m2 s− 1. For two cases where the upper outflow boundary was particularly sharply defined, entrainment rate we was estimated from Kz and bulk outflow parameters to be  10− 3 m s− 1 ( 100 m day− 1). A tide-forced, three-dimensional primitive equation ocean model with Mellor-Yamada level 2.5 turbulence closure scheme for diapycnal mixing yields results consistent with a significant tidal role in mixing associated with benthic stress and shear within the stratified ocean interior.  相似文献   

18.
The purpose of this paper is to detect and describe general trends in the spatial distribution of epibenthic and demersal communities of Le Danois Bank (El Cachucho) in relation to the environmental variables that characterize their habitat by means of multivariate ordination. Data were derived from two multidisciplinary surveys carried out in October 2003 and April 2004 included in the ECOMARG project. The surveys were focused on the study of the physical scenario, including both geological (seabed characterization from bathymetry and backscatter data) and hydrographic features, and the different compartments of the benthic fauna (endobenthic, epibenthic, suprabenthic and demersal communities). For the present study, epibenthos and demersal species were sampled using two different gears, a 3.5 m beam trawl and a Porcupine 39/52 type baca otter trawl respectively. The total species richness combining both samplers ascended to 221, including 71 species of fishes, 65 crustaceans, 35 molluscs, 29 echinoderms, 10 cnidarians and 5 sponges.Multivariate methods were used for the study of the characteristics of communities and habitats. Hierarchical cluster analysis was applied to calculate and visualize similarities between samples in terms of species composition. To assess the amount of variation of faunal densities related to a set of eight environmental variables, a redundancy analysis (RDA) was used. The set of environmental variables used were: depth, near-bottom temperature and salinity, sedimentary typology (dry weight percentages of coarse sands, medium and fine sands, silt and organic matter) and seafloor reflectivity. Using the spatial distribution of the ranges of depth and seafloor reflectivity that characterize the habitats of the faunal assemblages we defined the spatial distribution of the different communities.The multivariate analysis of 18 beam-trawl samples and 15 otter trawl samples showed the existence of 4 main assemblages associated with the more characteristic habitats of the area. The CallogorgiaChimaera community live mainly in the areas at the top of the Bank (425–550 m depth), where the sediment coverage is lower and there exists a high presence of rocky outcrops. The GryphusGaleus community were found in the areas at the top of the Bank covered by medium and fine sand sediments with low organic matter content. The PhormosomaTrachyrincus community live on the sedimentary terraces that characterize the Bank break (550–800 m) and the PheronemaDeania community occupy all the deeper (800–1050 m) sedimentary grounds of the inner basin.  相似文献   

19.
Mesozooplankton samples from the 4270-m deep Ierapetra Basin in the oligotrophic Levantine Sea have revealed a strong temporal variability in abundance and composition hitherto unknown for the deep sea pelagic zone. The phenomenon reflected by a survey in June 1993 as compared to January 1987 is assessed by (i) the increase of the mesozooplankton standing crop throughout the water column, (ii) the absence of a decline in mesozooplankton abundance with increasing depth below 1000 m, (iii) the outstanding dominance of two interzonal calanoid copepods at bathypelagic and abyssopelagic depths and (iv) a substantial faunal change due to the codominance of Calanus helgolandicus, which was found for the first time in the area. The underlying hydrographical factors are addressed in the light of the Eastern Mediterranean Transient (EMT). Apart from a possible long-term faunal change, the EMT may exaggerate episodic plankton blooms and surface-abyssopelagic coupling in space and time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号