首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

2.
Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contact force. It can even approximate the performance of full state feedback control without requiring the difficult measurement of tire deflection. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. These strategies have typically required a relatively high bandwidth for actuator response. This paper investigates the simulation performance and “frequency response” of two concepts in low-bandwidth semi-active suspension control, one that sets a damping force directly and another that sets the damping resistance. The electronically controlled bandwidth of these actuators is approximately an order of magnitude less than other semi-active devices; high frequency control is handled mechanically. A quarter-car model is studied with the controlled damping replacing both passive and active damping of typical control schemes. Both low-bandwidth damping strategies perform remarkably well compared to both active and high-bandwidth, semi-active damping. In certain dynamic performances, the new semi-active strategies outperform active damping and what the author calls “nominal” semi-active damping.  相似文献   

3.
SUMMARY

Most vehicle suspensions are composed of passive spring and damper devices, although improved suspension performance is possible if an active system is used to control forces or relative velocities. The complexity, power requirements, and cost of fully active suspensions have restricted their use. Various partially active suspensions have been proposed and suspensions with slow load levelers and variable dampers are in widespread use. Here we analyze a class of basically passive suspensions the parameters of which can be varied actively in response to various measured signals on the vehicle. These suspensions can come close to optimal performance with simpler means than many of the active or semi-active schemes previously proposed.  相似文献   

4.
Adaptive Suspension Concepts for Road Vehicles   总被引:1,自引:0,他引:1  
Most vehicle suspensions are composed of passive spring and damper devices, although improved suspension performance is possible if an active system is used to control forces or relative velocities. The complexity, power requirements, and cost of fully active suspensions have restricted their use. Various partially active suspensions have been proposed and suspensions with slow load levelers and variable dampers are in widespread use. Here we analyze a class of basically passive suspensions the parameters of which can be varied actively in response to various measured signals on the vehicle. These suspensions can come close to optimal performance with simpler means than many of the active or semi-active schemes previously proposed.  相似文献   

5.
With a simplified approach for creating road surface elevation information for simulation of vehicle vertical response to roadway unevenness, roadways for single and parallel track simulations and averaged roads for variable velocity simulation are developed. Sets of correctly chosen random roadway slopes are averaged appropriately for the variable velocity simulation. The procedure generates approximately “white” slope spectral density roadways in the frequency ranges of interest, and the elevation profiles are representative of average road profiles. The method is simple in practice yet suffices for many parameter studies of suspensions and vehicle dynamics.  相似文献   

6.
Four-wheel-steering (4WS) systems have been studied and developed with remarkable success from the viewpoint of vehicle dynamics. Most of the control methods require a linearized bicycle model of the actual vehicle system which is however strongly influenced by tire nonlinearity. This paper proposes a new method to design the 4WS system taking into account the nonlinear characteristics of tires and suspensions. For this purpose integration of artificial neural network and linear control theory is introduced for the identification and control of a nonlinear vehicle model structured using a software for multi-body dynamic analysis (ADAMS). This model takes into account the nonlinear characteristics of actual vehicles with tires modeled by “magic formula“. The results of computer simulations show that the proposed nonlinear approach is efficient in improving the handling and stability of vehicles.  相似文献   

7.
This paper describes an investigation into active roll control of articulated vehicles. The objective is to minimise lateral load transfer using anti-roll bars incorporating low bandwidth hydraulic actuators. Results from handling tests performed on an articulated vehicle are used to validate a nonlinear yaw/roll model of the vehicle. The methodology used to design lateral acceleration controllers for vehicles equipped with active anti-roll bars is developed using a simplified linear articulated vehicle model. The hardware limitations and power consumption requirements of the active elements are studied. The controller is then implemented in the validated articulated vehicle model to evaluate the performance of an articulated lorry with active anti-roll bars. The simulation results demonstrate the possibility of a significant improvement in transient roll performance of the vehicle, using a relatively low power system (10 kW), with low bandwidth actuators (5 Hz).  相似文献   

8.
This paper illustrates the use of nonlinear control theory for designing electro-hydraulic active suspensions. A nonlinear, “sliding” control law is developed and compared with the linear control of a quarter-car active suspension system acting under the effects of coulomb friction. A comparison will also be made with a passive quarter-car suspension system. Simulation and experimental results show that nonlinear control performs better than PID control and improves the ride quality compared to a passive suspension.  相似文献   

9.
A mathematical model for the representation of longitudinal oscillations which can occur in car/trailer systems in braking, when the trailer brakes are applied through compression of the towing hitch, is described. The model is used to show how the trailer braking system parameters affect the steady deceleration performance of the vehicle combination, and the stability, in the linear system sense, of the steady motions. The sensitivity of the stability to other system design parameters is also examined.

Digital simulation of the motions occurring in response to a step input of car braking torque is reported, with the results confirming the predictions of the linear stability analysis, and also showing the influence of backlash in the trailer brake actuating mechanism.

The system is shown to be capable of self-excitation in a “shunting” mode, in which the car and trailer motions are in antiphase, with the stability/damping property critically dependent on drawbar damping, and only weakly dependent on other system parameters. The characteristic frequency of the “shunting” mode oscillations is shown to be controllable via the stiffness of the trailer brake linkage, but this frequency is closely related to the steady drawbar deflection which occurs in uniform deceleration.

The model behaviour described provides a basis for the design of relevant systems whose longitudinal dynamic characteristics will be satisfactory.  相似文献   

10.
The problem of minimizing the stopping distance of a vehicle along a given trajectory is considered. A simple “one-wheel-model” for the vehicle and a suitable performance index for the optimization problem are derived. A simplified problem is considered first from which an analytical solution for the optimal trajectory is obtained. The suboptimal open loop control inputs are then approximately computed via a search algorithm. The results show that the performance nearly matches the predicted value.  相似文献   

11.
The general form of the railway vehicle lateral dynamic predictions seems to have been proven. If wheels are coned, rails are of uniform cross-section, and suspensions are linear, then good predictions can be obtained. If wheels are not coned, and rail sections vary, but the suspension is relatively linear, as in modern vehicles, it is still possible to obtain good predictions of critical speed for flexible suspensions. The situation with “stiff” vehicles remains unproven. In each case dynamic response calculations will be only as good as the knowledge of the track input including the rolling line term. The validity of making calculations to predict critical speeds of very non-linear vehicles has not yet been convincingly demonstrated. Validation experiments for the more difficult case of time history representation suggest the possibility of correct prediction for easily comprehensible vehicles, but even this requires an enormous amount of supportive experimental work.  相似文献   

12.
SUMMARY

The paper deals with the theoretical estimation of the minimal power requirement, necessary for the operation of the active vibration control system (AVCS), connected with a passive one. It is assumed this compound system is used for the vibration control purposes in the heavy vehicle driver's seats. The systems considered in the paper are of two kinds. In the first case the electro-hydraulic actuator of the AVCS is situated in series to the spring-damper combination of the seat suspension. The second system under consideration is formed by parallel connection of electro-pneumatic actuator and the spring-damper combination of the seat suspension, which is a mechanical model of a real air spring with controlled in-flow and out-flow of the air. The comparison of results for both compound systems shows markedly higher power consumption of the serial system. The theoretical results are in acceptable agreement with the experimental data.  相似文献   

13.
The paper deals with the theoretical estimation of the minimal power requirement, necessary for the operation of the active vibration control system (AVCS), connected with a passive one. It is assumed this compound system is used for the vibration control purposes in the heavy vehicle driver's seats. The systems considered in the paper are of two kinds. In the first case the electro-hydraulic actuator of the AVCS is situated in series to the spring-damper combination of the seat suspension. The second system under consideration is formed by parallel connection of electro-pneumatic actuator and the spring-damper combination of the seat suspension, which is a mechanical model of a real air spring with controlled in-flow and out-flow of the air. The comparison of results for both compound systems shows markedly higher power consumption of the serial system. The theoretical results are in acceptable agreement with the experimental data.  相似文献   

14.
SUMMARY

The problem of linear preview control of vehicle suspension is considered as a continuous time stochastic optimal control problem. In the proposed approach minimal a priori information about the road irregularities is assumed and measurement errors are taken into account. It is shown that estimation and control issues can be decoupled. The problem formulation and the analytical solution are given in a general form and hence they apply to other problems in which the system disturbances are unknown a priori, even in a stochastic sense, but some preview information is possible.

The solution is applied to a two-degree-of-freedom (2-DOF) vehicle model. The effects of preview information on ride comfort, road holding, working space of the suspension and power requirements are examined in time and frequency domains. The results show that the greatest potential is for improving road holding properties. This effect could not have been observed in previous studies based on a 1-DOF vehicle model. It is also demonstrated that the presence of preview drastically reduces power requirements, thus relieving the performance versus actuator power dilemma.  相似文献   

15.
Looking at the future trends of the road traffic, one will recognize that the commercial vehicle participation will not decrease, although it is required from the environmental and social viewpoints. The reason is that the other means of freight transport (water, railway, air) do not provide the same flexibility as the road transport, and direct business interest of those companies, who are using this transport form is larger than the eventual loss caused by the penalties to be paid (taxes, compensation of higher axle load). This conflict is hard to solve, but the effect can be minimized. The commercial vehicle industry attempts to introduce systems to the vehicles, which are targeting on reduction of the environmental impacts caused by heavy vehicles. These systems, which are named generally as “intelligent chassis systems”, electronically control the operation of the chassis subsystems (engine, transmission, brake, suspension) and co-ordinate their operation on a higher level (vehicle controller, intelligent control systems, such as adaptive cruise control, video camera based lane change recognition system, etc.). This paper reviews the state-of-the-art of the commercial vehicle chassis systems, and tries to project their future development.  相似文献   

16.
In this study, a variable geometry active suspension system is considered. Actuation is employed to vary the leverage ratio between spring/damper unit and road wheel assembly. Since actuation is substantially perpendicular to the main suspension unit forces, work is primarily done only against frictional resistances to motion and the systems have inherently low force and energy requirements. Mechanical design and control system design involving proportional/differential elements or neural networks are discussed. System performance in self-levelling, free vibrations and manoeuvring of a theoretical vehicle are calculated. Good control of roll angle and jacking responses are predicted and energy economy is confirmed by these trials, which include a detailed consideration and modelling of the electrical actuators. The results reinforce the notion that variable geometry schemes have practical applications potential and are worthy of further research effort.  相似文献   

17.
In this study, a variable geometry active suspension system is considered. Actuation is employed to vary the leverage ratio between spring/damper unit and road wheel assembly. Since actuation is substantially perpendicular to the main suspension unit forces, work is primarily done only against frictional resistances to motion and the systems have inherently low force and energy requirements. Mechanical design and control system design involving proportional/differential elements or neural networks are discussed. System performance in self-levelling, free vibrations and manoeuvring of a theoretical vehicle are calculated. Good control of roll angle and jacking responses are predicted and energy economy is confirmed by these trials, which include a detailed consideration and modelling of the electrical actuators. The results reinforce the notion that variable geometry schemes have practical applications potential and are worthy of further research effort.  相似文献   

18.
Results of vehicle crosswind research involving both full-scale driver-vehicle tests and associated analyses are presented. The paper focuses on experimental crosswind testing of several different vehicle configurations and a group of seven drivers. A test procedure, which utilized wind-generating fans arranged in alternating directions to provide a crosswind “gauntlet”, is introduced and described. Driver preferences for certain basic chassis and aerodynamic properties are demonstrated and linked to elementary system responses measured during the crosswind gauntlet tests. Based on these experimental findings and confirming analytical results, a two-stage vehicle design process is then recommended for predicting and analyzing the crosswind sensitivity of a particular vehicle or new design.  相似文献   

19.
Power Requirements for Vehicle Suspension Systems   总被引:1,自引:0,他引:1  
This paper attempts to analyze the power requirements of a vehicle due solely to its suspension system, neglecting the important powers associated with air and rolling resistance. Power requirements for active and passive suspensions are compared using the simplest possible mathematical model. A mass in a gravity field moves at constant velocity over a surface and is supported by a point contact on the surface by a massless but otherwise arbitrary suspension system. It is shown that the average propulsive power required is equal to the average power lost in the suspension. In the limit cases of very stiff or very soft suspensions this power vanishes. Passive suspensions require no other power, but active suspensions may require significant extra power from the prime mover to generate the suspension forces.  相似文献   

20.
Using methods established in earlier work, calculations are carried out to reveal the influence of actuator bandwidth on the performance capabilities of a class of active suspension system for automobiles. The suspension consists of an actuator in series with a spring, the combination being in parallel with a passive damper, and the system is modelled as a single wheel station traversing a random road. The results indicate that a system with a 3 Hz bandwidth actuator and variable damping will have excellent ride performance qualities over a wide range of road roughness conditions. Since such a system can be expected to be easily adaptable to the running conditions, to provide good static and dynamic attitude control, to be capable of contributing to good steering control responses and to be inexpensive in terms of capital and energy consumption costs compared with most of the active systems which have previously been discussed, it is suggested that it is a prime candidate for further study and practical development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号