首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为对轿车车内中频噪声进行预测,对轿车车身各子系统进行划分,建立了轿车整车混合FE-SEA模型;采用理论和试验相结合的方法求得车身结构的模态密度、内损耗因子和车身板件的辐射效率;采用理论计算方法确定发动机悬置点的激励和路面对车身在前后悬架与车身连接点处的激励.分别用施加激励后的混合FE-SEA模型和SEA模型预测驾驶员右耳旁的噪声,并与试验进行对比.结果表明:在200~1000Hz 整个频率范围内,FE-SEA混合模型的预测结果与试验数据吻合良好,明显优于SEA模型的预测结果,尤其足中频段.  相似文献   

2.
试验模态分析技术在车辆降噪中的应用   总被引:1,自引:0,他引:1  
利用试验模态分析技术对某款轿车的白车身进行了试验分析,根据模态试验结果对该车车内噪声进行预测后,对白车身进行了优化.白车身优化前、后车辆的噪声测试结果表明,相对于优化前车辆,白车身优化后车辆的车内噪声降低了约3 dB(A),尤其是在50~100Hz频段内的低频噪声降低较多,使车内的声品质得到了较大改善.  相似文献   

3.
介绍了统计能量分析(SEA)方法的特点、原理及其在汽车车身声振设计中的应用情况.SEA方法是建立在一定假设基础上的基于能量统计的方法,可应用于早期开发阶段的产品特性分析与匹配,且可与CFD方法综合运用预测汽车内部风噪声,与FEM综合运用及与试验相结合预测整车的声振特性.阐述了通用SEA模型,以及用SEA方法分析吸声、阻尼材料对车内声场的影响,并以多个分析研究和具体实例说明了SEA方法在汽车车身声振设计中的应用.  相似文献   

4.
张勇  孟天  王坤祥  韩晨扬  杨鄂川 《汽车工程》2020,42(5):651-657,664
为研究特种车车内声品质,对3辆不同类型特种车进行实车道路实验,建立了主观评价烦躁度和声品质客观参数之间的Kriging模型,通过滤波分析得到不同频段声品质参数对主观评价结果的影响。建立了混合FE-SEA模型,以计算车内中频噪声,并与实验数据进行对比,验证模型精度。计算了车身主要板件对车内中频噪声的声学贡献度,找到对车内声压贡献较大的板件,并对其进行优化,有效降低了车内中频噪声。  相似文献   

5.
乘用车车内结构噪声治理探讨   总被引:2,自引:0,他引:2  
研究了车内噪声产生机理,阐述了车内结构噪声治理的试验与理论计算方法,建立了乘用车车内结构噪声治理的流程,主要包括车辆噪声振动测试、车内噪声产生原因分析、白车身有限元模态分析、白车身模态试验、车室声学分析、车身结构优化等.按照该流程进行了实际车辆车内结构噪声的治理,显著降低了车内结构噪声,提高了该车辆的NVH特性.  相似文献   

6.
为更加真实地模拟驾驶室内声学环境和提高驾驶室内高频噪声的预测精度,将泄漏量应用到SEA建模中,建立了考虑泄漏量的商用车SEA模型。利用伯努利方程推导等效总泄漏面积,将等效总泄漏面积按各个泄漏点的贡献量比例进行分配并添加到模型中仿真。与未考虑泄漏的SEA模型对比,结果显示仿真精度提高,误差减小了1.5 dB(A)左右,与试验结果间的绝对误差在2 dB(A)以内,满足工程上在汽车产品开发设计阶段对车内高频噪声分析预测的要求,从而验证了考虑泄漏量的SEA模型的有效性。在不同泄漏值下对驾驶室内噪声进行仿真计算,得到泄漏量对噪声值影响曲线。结合影响曲线和其他多方面因素,确定了合适的泄漏值为150 SCFM。对主要泄漏点开展有针对性的优化整改,气密性由整改前的268.5降到了149.1 SCFM。对优化整改后的驾驶室内噪声进行测量,结果显示,相比于优化前噪声值在两个工况下分别降低了1.82和1.31 dB(A)。  相似文献   

7.
由动力总成引起的车内噪声统计能量分析与控制   总被引:2,自引:0,他引:2  
以国产某轿车为研究对象,建立了完整的统计能量分析(SEA)模型,并确定了该模型的基本参数.通过试验与仿真相结合的方法确定了激励输入,测量了车辆50 km/h匀速行驶工况下发动机舱声压和驾驶员耳旁声压,确定了传递发动机舱噪声到车内声场的主要板件,模拟分析各噪声控制措施并对比了降噪效果.分析表明,应用SEA方法可有效控制动力总成对该车车内噪声环境的影响.  相似文献   

8.
针对后视镜引起的前侧窗与车内气动噪声问题,采用计算流体力学(CFD)方法对某商用车进行车外后视镜区域数值模拟和车内噪声预测的研究。稳态分析采用RANS模型中SST(Menter)k-ω模型,瞬态分析采用基于SST(Menter)k-ω的分离涡模拟(DES);通过分析后视镜侧窗区域的稳态静压力与瞬态动压力、速度和涡量云图,揭示了因A柱后视镜而产生车窗表面的湍流压力脉动的机理;同时求解瞬态流场获得两侧车窗表面湍流压力脉动载荷。采用声学FEM方法将车窗表面湍流压力脉动作为边界条件来计算气动噪声的传播,基于车内声学空间不同频率的声压级云图分布规律,说明了车内气动噪声主要集中在中低频段和声压级最大的分布区域;驾驶员左耳旁声压级曲线展示了20-2500 Hz频段内声压级变化规律。最后进行实车道路滑行测试,证实了气动噪声在车速80-110 km/h时较为明显的结论;采用CFD结合声学有限元的方法可较为准确地预测车内100-2500 Hz气动噪声的声压级,为优化后视镜、降低驾驶室内气动噪声提供仿真和试验的技术方案。  相似文献   

9.
在分析了车身密封系统引起的车内气动噪声产生机理及影响因素的基础上,通过整车气动声学风洞试验,对某四门三厢轿车的车内气动噪声的构成成分-泄漏噪声及外形噪声的频率特性进行了分析,并通过“开窗法”调查了车身各密封部件对车内泄漏噪声的贡献.结果表明,泄漏噪声主要发生在中高频段,且对车内总噪声的贡献比外形噪声大;车门、后视镜和侧窗的密封是该轿车最重要的泄漏噪声源,但具有不同的特征频段.  相似文献   

10.
在介绍车室声腔声学系统建模方法和声固耦合系统有限元方程式的基础上,针对某轿车建立了车室声固耦合有限元模型。利用Abaqus对白车身结构,车内声腔结构以及声固耦合模型进行了模态分析,并通过对耦合前后模型的模态对比,得到了对车身振动以及噪声影响最大的频率段。同时通过模拟实验条件对声固耦合模型施加正弦激励,得到车内噪声声压场分布,从而为以后车内NVH性能的改进提供了参考。  相似文献   

11.
以某型客车白车身的试验模型和车门车窗的有限元模型求取结构模态信息,获取结构20~200 Hz的振动速度特性后,建立车内空腔的边界元模型.在LMS Virtual.Lab中计算声学传递向量特性,从而进行车身板件声学贡献分析,得出各板件对车内场点总声压的贡献度,并找出对车内某点声学贡献大的板件.通过实施改进措施,改善了该车车内噪声水平.  相似文献   

12.
车内耦合声场振动噪声预测研究   总被引:5,自引:1,他引:4  
建立了轿车车身结构有限元模型、车室声腔声学有限元模型,以及声固耦合模型;进行了车身结构模态分析、车室声腔声学模态分析和耦合声场模态分析.研究了声固耦合系统在发动机和路面激励作用下的车内声学响应,预测了车内振动噪声并分析了车身各板件的声学贡献.据此采取了相应的改进措施后,得到了较好的降噪效果.  相似文献   

13.
提出了一种通过白车身模态分析、Trimbody车身模态分析、声腔模态分析、噪声传递函数分析等CAE分析改进越野车车内噪声的方法,与实车试验结果对比,二者在低频范围内问题频率点基本一致。通过仿真方法确定了噪声产生的原因,找到问题频率下车身板件振动较大的部位,并提出相应的改善措施,达到降低车内噪声的目的。  相似文献   

14.
为评估某SUV车型气动噪声,运用格子玻尔兹曼(LBM)与统计能量分析(SEA)法相结合的方法对该车型进行数值仿真,得到车外监测点及车内响应结果,并与试验结果进行比对分析,验证了该方法的可靠性.采用该方法对某SUV车型后视镜支座上表面倾斜角度进行优化,仿真结果表明,优化方案使车内语音清晰度(AI)提高了2.6百分点,1~...  相似文献   

15.
阐述了结构各子系统间的功率平衡方程,介绍了半无限流体方法的基本假设,利用统计能量分析(SEA)及半无限流体方法,建立了轿车车外噪声预测模型;通过有限元方法、稳态能量流方法和理论计算方法,分别确定了轿车SEA模型子系统的模态密度、内损耗因子和耦合损耗因子;通过试验和计算流体动力学方法确定了轿车SEA模型的激励;对施加激励后的模型进行了车外噪声分析预测,并将预测结果与试验结果进行了对比。结果表明:采用SEA和半无限流体方法对车外噪声预测,不仅可以得到可靠的预测结果,简化建模步骤,而且能够满足工程上汽车产品在开发设计阶段对车外噪声预测的要求。  相似文献   

16.
针对某中型客车进气口辐射噪声和车内噪声较大的问题,首先根据车内声模态试验结果和对道路试验数据的偏相干与频谱分析结果,找到了主要噪声源为进气口,并确定了消声目标频段。接着研究了空滤器滤芯与穿孔管的声学特性,建立了进气系统有限元声学模型,并通过对比进气系统传递损失仿真曲线与怠速进气口噪声频谱,验证了模型的准确性。然后针对目标频段设计了进气消声器,使进气系统的传递损失在250~400Hz频段平均达24.7d B。最后进行了道路验证试验,结果表明设计的消声器有效降低了进气口辐射噪声和车内噪声。  相似文献   

17.
针对某B级轿车匀速行驶工况车内噪声大的问题,采用试验与CAE分析相结合的方法对车内噪声源进行综合识别,得到其主要噪声源及主要噪声频段,提出优化轮胎花纹结构、增加动力吸振器消除副车架共振模态、优化车身结构和增加阻尼垫的改进方案。改进前、后分别进行了整车NVH试验,试验结果显示,改进后匀速行驶工况车内噪声降低3.2 dB(A)。  相似文献   

18.
在研究汽车车内噪声的过程中,判断低频噪声的主要来源和降低车内低频噪声水平是一个难点。运用声传递向量(ATV)技术,以某轿车为例,建立车内声学空腔边界元模型,对车内低频噪声进行仿真;通过对声传递向量以及声压频响函数的计算,进一步对低频段的噪声贡献量分析,为判断低频噪声的主要来源提供了一种分析方法。选取车内驾驶员右耳畔声压响应的6个峰值点,采用幅值—相位图对场点声压进行模拟,对车身板件声学贡献量进行排序,发现防火墙和前挡风玻璃的结构振动对车内低频噪声的产生可能有重要影响,为进一步的改进提供一定的参考依据。改进设计后,车内低频噪声水平得到一定程度抑制。  相似文献   

19.
基于动刚度和模态应变能的某车NVH性能改善研究   总被引:2,自引:0,他引:2  
本文通过创建某车的白车身模型和带内饰车身模型,进行车身噪声传递函数分析,并结合车身的模态应变能分布情况和动刚度分析结果,查找并确定导致车内噪音较大的原因,并提出了几种优化方案,采用CAE方法选择最佳方案,经试验验证,最终改善车身的NVH性能。  相似文献   

20.
SRV白车身模态及其对车内噪声影响的研究   总被引:2,自引:3,他引:2  
建立了某运动休闲车(SRV)白车身的有限元模型并进行了模态分析,得到了SRV白车身的固有频率和振型。模态试验和仿真计算的对比分析结果表明,所建立的白车身有限元模型较好地反映了原结构的振动特性。根据模态分析结果,提出了改善该SRV车型NVH性能的改进措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号