首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决车辆噪声主动控制系统中参考信号在车内容易受到次级声源的污染和以发动机转速信号作为参考只能控制发动机阶次噪声的问题,提出一种基于智能数据融合的车内噪声主动控制算法。首先根据传递路径分析结果选择对车内噪声贡献量大的车外测点信号,然后将发动机转速信号和车外测点信号进行数据融合作为参考信号,再利用迭代变步长FxLMS算法对驾驶员耳侧噪声进行主动控制。基于试验采集的不同工况车内噪声进行仿真分析,结果表明,所提出的算法相较于采用发动机转速信号作为参考信号的方法在总声压级上降低了4.4 dB(A)。  相似文献   

2.
现有的多数变步长主动控制算法的思路是建立步长参数与误差之间的非线性函数。本文中提出了一种基于反正切函数的迭代变步长FxLMS算法(iterative variable step-size FxLMS,IVS-FxLMS);然后根据发动机转速信号构造参考信号,再利用IVS-FxLMS算法对驾驶员耳侧的2阶、4阶和6阶发动机噪声进行主动控制效果仿真;最后基于某国产车设计搭建主动控制系统软硬件进行实车实验来验证仿真结果。实验结果表明,车内发动机阶次噪声得到有效抑制,降低了车内发动机轰鸣声。  相似文献   

3.
车内主动降噪技术在低频噪声控制方面有较明显的优势,利用车内扬声器发出抵消声波实现降噪。论文采用扫频的方法进行主动降噪的次级路径建模,并在某四缸发动机车型上实现了控制器与原车线路匹配,采用原车音响搭建车内发动机主动降噪系统。采用MATLAB搭建仿真模型验证自适应陷波算法,推导了用于车内次级路径建模的扫频公式及辨识结果。再从工程角度介绍控制器与整车接口的匹配方法。最后采用数字信号处理(DSP)技术进行实车效果验证,在锁定二挡的加速工况下发动机二、四、六阶噪声降低,30~300 Hz的声压级Overall(OA)值最大降低4 dB。  相似文献   

4.
针对某车型怠速工况车内噪声偏大且耳压感强烈的问题,以模态试验测试与怠速工况频谱分析相结合的方法进行问题识别,发现后背门一阶模态频率与发动机二阶频率相近是引起车内噪声偏大且有耳压感的原因。对比调整后背门限位装置压缩量前后驾驶员右耳处噪声变化情况,试验结果表明车内噪声降低,耳压感消失。  相似文献   

5.
神经网络技术在车内噪声预测上的应用   总被引:2,自引:0,他引:2  
宋传学  孙惠春 《汽车工程》1998,20(6):347-349,373
本文根据神经网络理论,建立了单一工况下由发动机悬置点振动信号预测车内特定点低频噪声的神经网络模型,并针对驾驶员耳旁噪声进行了实验研究,结果表明:基于神经网络的单一工况车内噪声观测模型,可以频域内很好地预测出特定点的车内噪声。  相似文献   

6.
针对某款乘用车小油门加速过程中车内噪声粗糙感明显的声品质问题,首先对噪声时域数据进行频谱特性分析,得到造成噪声粗糙感明显的原因是车内半阶次声压幅值调制。其次通过传递路径试验分析,确定车内半阶次激励源是发动机半阶次振动,主要传递路径是动力总成悬置。最后通过提高前围隔音量,优化悬置刚度及降低空调管隔振垫硬度,明显降低了车内噪声的半阶次特征,加速声品质得到有效改善。  相似文献   

7.
基于发动机转速的车内有源消声控制策略和自适应算法   总被引:4,自引:0,他引:4  
在测试分析某轻型客车车内噪声特性的基础上,根据车内噪声主要峰值频率与发动机转速密切相关的特点,提出以发动机转速信号来构造车内有源消声系统初始次级声源参考信号的方法,研究基于该方法的车内有源消声控制策略和自适应控制算法,构建车内有源消声系统。通过对某轻型客车进行有源消声的试验研究表明,该系统结构简单、易于实现,并可显著降低由发动机振动和噪声辐射引起的车内低频噪声频谱中主要峰值处的噪声,在不同发动机转速下,使驾驶员耳旁噪声降低10dB(Lin)左右。  相似文献   

8.
为解决某车型车内NVH异响问题,文章采取3挡节气门全开工况,发动机转速从1 000 r/min加速到4 500 r/min,对车内噪声进行测试。经对比分析发现,车内各位置在2 000~3 000 r/min存在均值为7.5 dB的峰值噪声,均由2阶噪声引起;通过分析进排气噪声对车内异响的贡献,得到车内异响是由进气噪声引起的。对产生异响的进气系统进行优化,在进气道上安装一个谐振腔,消除了车内噪声,整车车内NVH达到了较好的效果。车内噪声识别方法及与CAE结合的手段可以为相似问题提供很好的解决思路。  相似文献   

9.
为简化乘用车车内声品质客观评价模型,从物理声学和心理声学角度出发,针对10辆典型乘用车,在精密级整车半消声室内进行了车内噪声测试,得到指定测点在多个稳态工况下的噪声信号,使用以多项式核函数为基础的主成分分析方法将11维乘用车车内声品质客观评价特征降低至4维,包括尖锐度、粗糙度、清晰度指数和优先语音干扰级,并得到了所提取的主要客观特征在不同发动机转速下的变化规律:当发动机转速达到1 800 r/min附近时,尖锐度和优先语音干扰级出现峰值,粗糙度和清晰度指数出现局部极小值。  相似文献   

10.
NVH性能不仅是影响车辆驾乘舒适感的重要因素,而且是评价整车品质的重要指标之一。本文介绍了某SUV车型在四驱小油门加速工况下车内轰鸣问题的解决思路和优化方案,通过试验测试发现该车轰鸣是由发动机2阶激励经过悬置传递,引起风挡下横梁模态共振,进而放大车内2阶噪声。通过优化悬置刚度及横梁模态,从路径和响应上控制发动机激励、车内传递及放大,从而有效降低或消除车内轰鸣。  相似文献   

11.
以四辆不同类型的纯电动汽车在匀速和POT(缓油门加速)工况下电机近场和驾驶员右耳旁噪声采集样本为评价对象,对电机近场和车内噪声A计权声压级进行对比,计算噪声传递的衰减百分比,并计算车内噪声的心理学客观参数。同时,利用声品质客观量化数学模型进行四辆样车的车内声品质评价。同时,通过对电机电磁噪声阶次的提取和分离评价,分析了电磁噪声对电动汽车声品质的影响。相关试验分析结果对电动汽车的声学设计和电磁噪声改进具有一定的指导意义。  相似文献   

12.
基于神经网络方法的车内噪声自适应主动控制   总被引:4,自引:0,他引:4  
建立了一种基于神经网络方法的车内噪声主动控制系统。用Elman神经网络对驾驶员耳旁噪声信号进行识别、预测,并用LSLL自适应信号处理方法对车内低频噪声进行主动控制。通过在稳态工况下对被测试轻型客车的试验研究表明,此系统能有效降低车内低频噪声。  相似文献   

13.
阐述了传递路径分析(OPAX)的估算方法及载荷力识别方法.针对某车辆全负荷加速行驶到为3650 r/min时驾驶员附近4阶噪声大的问题,建立了“激励源-驾驶员位置”传递路径模型,并进行了传递路径数据分析.结果表明,导致该车激励力变大的原因是发动机4阶激励与发动机左悬置支架模态重合产生共振.在发动机左悬置支架安装动态吸振器并进行了整车试验.结果表明,车内噪声整体下降2.4 dB(A),满足相关要求.  相似文献   

14.
整车车内NVH异响的识别及解决方案   总被引:1,自引:0,他引:1  
利用BBM公司的MKII测试设备对某车车内噪声进行测试,发现车内各位置在2 000~3 000 r/min存在4~7 dB(A)的"booming"声,经分析均由2阶噪声引起,且主观评价上也能感觉很大的"轰鸣"声.通过分析进排气噪声和排气吊挂对车内异响的贡献.找出产生车内"booming"异响的原因在于进气在2 000~3 000 r/min存在一个2阶噪声构成的峰值.对产生异响的进气系统进行优化,最后使车内"booming"噪声消除,整车车内NVH达到较好的效果.  相似文献   

15.
在研究汽车车内噪声的过程中,判断低频噪声的主要来源和降低车内低频噪声水平是一个难点。运用声传递向量(ATV)技术,以某轿车为例,建立车内声学空腔边界元模型,对车内低频噪声进行仿真;通过对声传递向量以及声压频响函数的计算,进一步对低频段的噪声贡献量分析,为判断低频噪声的主要来源提供了一种分析方法。选取车内驾驶员右耳畔声压响应的6个峰值点,采用幅值—相位图对场点声压进行模拟,对车身板件声学贡献量进行排序,发现防火墙和前挡风玻璃的结构振动对车内低频噪声的产生可能有重要影响,为进一步的改进提供一定的参考依据。改进设计后,车内低频噪声水平得到一定程度抑制。  相似文献   

16.
某SUV工装样车3 GWOT(3 Gear Wide Open Throttle,3挡全油门加速)工况下发动机转速在3 450 r/min左右时驾驶员内耳位置存在明显轰鸣噪声,试验测试结果显示发动机加速噪声声压级曲线在该频率下存在峰值,且2阶噪声起主导作用。通过NTF(NoiseTransferFunction,噪声传递函数)仿真分析发现了轰鸣噪声传递的主要路径,通过动刚度分析和模态分析确定动力总成激励激起副车架模态是轰鸣问题产生的主要原因。对副车架进行改进,提高了副车架1阶弯曲模态频率,同时提高扭力臂悬置安装点的动刚度水平,改善了噪声传递函数并解决加速轰鸣问题。改进后试验测试结果显示发动机加速噪声声压级曲线峰值在该频率下降低,主观感受加速轰鸣噪声基本消失,验证了仿真分析的准确性和改进方案的有效性。  相似文献   

17.
怠速工况下车内结构噪声传递路径分析与控制研究   总被引:1,自引:0,他引:1  
以控制怠速工况下车内结构噪声为研究目标,采用子结构模态综合法和边界元法建立基于试验仿真数据的传递路径分析模型,分析怠速工况下驾驶员右耳位置20~100Hz频率范围内各路径的激励力及声学灵敏度,计算各路径结构噪声贡献情况。通过对发动机右悬置车身侧支架进行结构改进、提高其1阶固有频率,使怠速工况下目标响应点主要峰值频率最大降幅为3.72d B,整体噪声水平下降2.50d B。  相似文献   

18.
针对某款车在加速工况下,发动机转速在3 600 r/min左右车内出现轰鸣噪声,文章利用试验和CAE相结合的方法,明确进气系统存在120 Hz声模态和空滤支架安装点动刚度不足是产生车内轰鸣声的要因。通过提升空滤支架安装点动刚度,出气管设计120 Hz谐振腔,降低了问题转速的噪声峰值,主观评价轰鸣声改善明显。另外,针对出气管隔振波纹的隔振方向对车内噪声的影响进行了研究,试验验证隔振波纹解耦对车内噪声峰值有2 dB(A)的优化效果,此优化方向为工程化控制和解决进气系统噪声问题提供了有效可行的新思路。  相似文献   

19.
本文对发动机怠速工况下车身结构噪声的传递特性和峰值噪声的成因进行研究。采用力锤敲击法,测量从悬置被动侧加速度至驾驶员右耳的噪声传递函数,导出从加速度至声压的传递函数,再根据发动机怠速下悬置被动侧的加速度激励,高精度合成了驾驶员右耳处的总声压并研究路径传递噪声的贡献。结果表明,总声压是频域中所有路径传递声压的叠加,与路径传递声压的幅值与相位均有关,路径传递声压对总声压的贡献有正负之分。最后识别出主要的传声路径,并利用动刚度曲线、噪声传递函数曲线和悬置的加速度谱,对路径的峰值噪声成因进行了分析。  相似文献   

20.
<正>一、故障现象有1辆2011款奇瑞瑞虎3(1.6S)SUV,行驶里程6.54万km。接车后起动发动机,发现发动机故障指示灯常亮,发动机怠速时明显感觉发动机抖动,机械增压器处发出"咔咔"声,踩下油门踏板在任何位置,发动机转速均不超过1500r/min,排气管出口发出"突突"声并伴有大量黑烟。二、故障原因分析针对该款机械增压电控发动机工作原理,能引发该故障的原因有:1.进气压力传感器及其线路故障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号