共查询到17条相似文献,搜索用时 56 毫秒
1.
2.
针对在复杂场景下,背景区域干扰特征过多、被检测目标运动速度快等导致的动态目标检测率低的问题,研究了基于深度学习的多角度车辆动态检测方法,将带有微型神经网络的卷积神经网络(MLP-CNN)用于传统算法的改进.使用快速候选区域提取算法提取图像中可能存在车辆的区域,之后使用深层卷积神经网络(CNN)提取候选区域的特征,并在卷积层中增加微型神经网络(MLP)对每层的特征进一步综合抽象,最后使用支持向量机(SVM)区分目标和背景的CNN特征.实验表明,该方法能够处理高复杂度背景条件下,部分遮挡、运动速度快的目标特征检测,识别率高达87.9%,耗时仅需225ms,比常用方法效率有大幅度提升. 相似文献
3.
为提高深度学习神经网络运行速度,满足智能驾驶对算法实时性的要求,基于一种一体化实时目标检测算法YOLO和一种目标检测网络模型Faster RCNN,提出一种结合两者特点的实时目标检测神经网络。该网络保留区域卷积神经网络(R-CNN)算法的二次检测模式和区域生成神经网络RPN,去掉先验框,采用YOLO直接预测位置。结合Mask R-CNN中的ROI-Align方法进行二次位置修正,减少了Faster R-CNN中ROI-pooling所带来的位置预测偏差。对改进后的网络在KITTI数据集上进行测试,结果表明:改进后的神经网络检测一次仅耗时38 ms,检测的平均精确度高于YOLO和Faster RCNN,且对于不同大小的目标都具有很好的泛化能力。 相似文献
5.
自动驾驶场景中交通标志的检测和识别十分重要,为提高自然场景下交通标志检测精度,本文中提出了一种基于Cascade-RCNN改进的交通标志识别算法。首先,针对交通标志这类小目标特殊任务,将FPN模块的深层特征信息融合进浅层特征层。其次,改进了目标检测任务中的评价指标IoU,引入目标检测任务的直接评价指标GIoU指导定位任务,提高了检测精度。最后,算法在德国交通标志数据集GTSDB下进行了实验验证,以ResNet101为基础特征提取网络,mAP可达98.8%,实验结果表明了所提算法的有效性,具有优越的工程实用价值。 相似文献
6.
随着智能网联汽车的发展,越来越多的学者投身于L4级以上的稳定的自动驾驶算法研究中来。自动泊车系统作为智能网联汽车的一项重要功能,能够在有效提升驾驶体验的同时,降低由于复杂地段的泊车困难带来的交通事故和经济损失,因此自动泊车在学术界和工业界掀起了研究热潮。传统的自动泊车系统中对于车位的感知依赖于超声波雷达,并且对车位空间结构有诸多限制。由于复杂的视觉环境和环视图像上停车位的不完整显示,基于视觉的停车位检测是一项重大挑战。本文提出了一种基于卷积神经网络(CNN)的车位检测算法,设计适用于车载环视图像的多重沙漏网络,并引入一种策略选择最佳感受野,从而联合检测停车位的角和线特征。所提出的方法达到了较高的精度和召回率,在搭载GPU的嵌入式移动终端可以达到30 FPS的实时性和较高的精准度。 相似文献
8.
传统的夜间车辆检测基于车灯特征的提取和识别,这类方法容易发生误判、检测精度和检测实时性不高。针对上述问题,本文研究了基于改进Mask RCNN(mask RCNN-night vehicle detection,Mask RCNN-NVD)的夜间车辆检测算法。将残差网络(residual network,ResNet)结构中的普通卷积修改为数量为16组的分组卷积,通过16组1×1卷积实现通道数叠加,将网络参数降至普通卷积的1/16,提升检测速度,并实现与普通卷积相同的效果;将通道注意力机制模块(squeeze-and-excitation,SE)嵌入ResNet结构中,通过2个全连接层构建瓶颈结构,将归一化权重加权到各通道特征,增强网络表征能力;在特征金字塔网络(feature pyramid networks,FPN)后加入自底向上结构,将底层特征强定位信息传递到高层语义特征中;加入自适应池化层,根据区域候选网络(region proposal network,RPN)产生的候选区域分配至不同尺度特征图中,并在底层特征与各阶段最高层特征之间加入跳跃连接结构,实现缩减模型参数的同时保留... 相似文献
9.
近年来,智能网联汽车(ICV)已成为智能工业时代最有前景的发展方向。作为现代移动的重要模式,ICV的设计和开发越来越强调个性化需求。提出一种仅使用车载CAN总线行车状态数据,基于深度学习的驾驶人身份识别通用框架。首先采集20名驾驶人在固定试验路线下,包括不同道路类型、不同交通条件下的自然驾驶行车状态数据集;其次对9种类型的CAN信号行车数据进行数据清洗与重采样,构建数据样本集。搭建了由卷积层、池化层、全连接层、SoftMax层构成的一维卷积神经网络(1-D CNN)驾驶人身份识别模型,并且使用Adam算法、L2正则化、Dropout、小批量梯度下降等方法对模型性能进行优化。算法验证过程中,探讨了模型卷积核占比、卷积核数量、卷积层层数、全连接层节点规模对模型识别准确率的影响,进而对模型结构参数进行优选。进一步地,将该算法与K近邻(KNN)、支持向量机(SVM)、多层感知器(MLP)等传统机器学习方法及深度学习算法长短时记忆网络(LSTM)进行对比分析,同时探究样本时间窗口大小、样本数据重叠度、驾驶人数量对模型识别结果的影响。在数据时间窗口为1 s、数据重合度80%的条件下,对20名驾驶人进行识别,评价指标宏观F1分数可达99.1%,表明该模型表现明显优于其他对比模型算法,其对驾驶人身份识别表现稳定,鲁棒性强。 相似文献
10.
目前,车牌识别发挥在众多应用程序和许多技术已经提出.但是,他们中的大多数可以仅适用于单行车牌.在实际应用程序方案,也有现有的许多多行车牌.传统方法需要对双行车牌的原始输入图像.这是一个非常复杂场景中的难题.为了解决这个问题,我们建议一个端到端的神经网络为两个单行和双行车牌识别.是的原始输入车牌图像的分段.我们查看这些整... 相似文献
11.
12.
为了将有效地识别车辆类型用于智慧交通系统,本文在分析Inception V3模型的基础上,提出了一种基于迁移学习理论的车型分类深度学习模型。该模型首先在Inception V3模型的基础上去除最后的全连接层,并加入参数优化层,然后采用Dropout和全局平均池化层。理论分析和试验结果表明,该模型的性能优于基于VGG-16的车型分类模型、基于Xception的车型分类模型和基于Resnet50的车型分类模型,其训练精度优于96.48%、测试精度优于83.86%。 相似文献
13.
14.
15.
16.
针对雷达、视频、感应线圈等车辆感知装置难以同时满足低成本、高精度、易安装维护的问题,提出基于麦克风阵列车辆检测 的公路隧道照明节能方法及系统研究,实现精准照明节能。 具体方案包括: 1)采用成本较低、非地埋的基于麦克风阵列车辆检测 装置替代已有接触式感知技术; 2)在音频装置中,通过改进的MVDR算法对麦克风阵列拾取到的信号进行降噪去混响,并融合基 于卷积神经网络交通事件识别方法,实现隧道内精细、分段车辆感知; 3)提出基于环境传感的多信息协同控制方法,根据环境与隧 道内车辆行驶信息,进行无级调光控制器多信息联动,智能调节隧道内灯照明亮度与时长。 试验分析表明,提出的基于麦克风阵列 音频车检技术单独事件检测精度高于98%,混合事件检测精度高于95%。 工程实践表明,与常规LED无级调光隧道节能技术相 比,该技术使隧道综合能耗降低约20%,极大地降低了安装维护成本,具有很好的应用价值。 相似文献
17.
锚杆的锚固质量通常使用声波反射法进行检测,然后使用人工方式对其进行分析和分类,但人工方式不仅具有较强的主观性,而且还费时费力。为解决上述问题,提出一种基于Alexnet卷积神经网络的锚杆锚固质量评估方法。首先,对已经经过人工分类的声波反射信号进行预处理,得到原始样本数据,并将其按一定比例划分为训练集和测试集;然后,用该样本数据训练卷积神经网络模型并进行分类测试。试验结果表明: 1)该预处理方法极大地提高了最后分类的准确性,样本数据集达到了约90%的准确率; 2)在实际工程应用中,与人工分类结果相比,采用该方法得到的分类结果认可度达到95%。 相似文献