首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对新能源汽车能量管理中难以长期、精准地预测车速的问题,提出了一种基于模型的参数化车速预测方法,利用传感器和GPS提供的前瞻数据预测车辆的速度轨迹。首先根据整车动力学和车辆停车转弯趋势建立基于智能驾驶员模型(IDM)的车速预测算法;然后,从NGSIM公开数据集中筛选数据用于参数标定及仿真;最后,利用遗传算法(GA)对算法参数进行标定。仿真验证结果表明,优化后的车速预测算法在通畅或拥堵的交通环境中,对于长期车速预测均有较高的精度,误差可控制在8%~13%范围内。  相似文献   

2.
城市交通环境中车辆的驾驶行为随机性较高,且驾驶人驾驶风格迥异。为了解决复杂交通环境下车辆行驶轨迹难以精确预测的问题,在社会生成对抗网络(Social GAN)的基础上,考虑车辆的行驶速度、加速度、航向角等行驶状态参数和形状尺寸,建立车辆间交互影响力场模型,提出一种基于时-空注意力机制的车辆轨迹预测算法(SIA-GAN)。根据受到场景中其他车辆交互影响力的大小赋予其他车辆不同的空间注意力权重因子,重点关注对自车行驶影响较大的车辆信息,并结合时间注意力机制挖掘自身车辆对观测时段内历史轨迹特征向量的时间依赖性,得到车辆预测轨迹。为验证所提算法的有效性,在开源数据集上对算法进行迭代训练,并与LSTM、Social LSTM、Social GAN三种轨迹预测算法进行对比分析。研究结果表明:SIA-GAN不仅在训练时的收敛速度上有较大提升,且与现有其他轨迹预测算法相比在平均位移误差、最终位移误差、平均速度误差、平均航向角误差等评价指标均有大幅下降,预测3.2 s时各项指标平均降低了51.25%、60.1%、37.84%、13.75%;预测4.8 s时各项指标平均降低了52.78%、61.47%、3...  相似文献   

3.
提出了基于预测轨迹的行车风险评估方法,首先建立了沿预测轨迹两侧具有渐变高斯截面特征的驾驶风险域DRF以表征驾驶员行为的不确定性,然后考虑车辆与周围静态、动态障碍物处于特定状态的风险后果建立环境事件成本,得到适应复杂行车场景不确定性的量化感知风险,并基于贝叶斯理论融合预测区间内的量化感知风险时间序列,实现了对于未来行车潜在碰撞风险的预测。实车轨迹和仿真实验结果表明,相比于经典TTC指标方法,基于融合未来一段时间内自车与周边环境交互信息的DRF的风险评估方法可以更快、更准确地辨识复杂交通场景的行车风险变化,为研究周边多车复杂场景下车辆碰撞风险问题提供了参考。  相似文献   

4.
本文中基于端到端学习机制进行了高速公路场景下的车辆行驶轨迹预测。首先,为量化表达行驶轨迹,并对预测结果进行合理评价,建立了行车轨迹曲率预测模型与评价体系。然后,针对端到端的行驶轨迹曲率预测训练集中驾驶员行为决策的不确定性导致性能不佳的问题,采用场景切分和特征预提取的方法进行优化和实车试验验证。结果表明,该方法提高了高速公路行驶轨迹预测的准确性和可靠性。  相似文献   

5.
高镇海  鲍明喜  高菲  唐明弘 《汽车工程》2023,(7):1145-1152+1162
针对单模态轨迹预测无法充分表示未来预测空间以及解决轨迹预测固有的不确定性问题,本文构建了驾驶行为意图识别及交通车辆预期轨迹预测模型。驾驶行为意图识别模块识别被预测车辆车道保持、左换道、右换道、左加速换道和右加速换道的概率;交通车辆预期轨迹预测模块采用编码器-解码器架构,输出被预测车辆未来6 s内可能发生的多种行为和轨迹。通过HighD数据集对模型进行训练、验证与测试。试验结果表明:基于意图识别的预期轨迹预测模型生成的多模态概率分布可提高本车行驶安全性,与其他方法相比显著提高轨迹预测精度,在预测长时域轨迹上具有明显的优势。  相似文献   

6.
针对自动驾驶车辆行驶轨迹的横向跟踪问题,设计了线性时变模型预测控制器。以车辆3自由度动力学模型为预测模型,以横向位置偏差最小为主要控制目标,考虑车辆状态约束、控制约束和轮胎侧偏角约束,优化了自动驾驶车辆轨迹跟踪安全性、转向稳定性和操作可行性等多目标性能。搭建MATLAB/Simulink和CarSim联合仿真模型,并将所设计的控制器控制效果与熟练驾驶员操纵结果、线性二次规划控制器控制效果进行了比较分析,结果表明,所设计的控制器可以有效解决多约束条件下自动驾驶车辆行驶轨迹的横向跟踪问题,且在安全性、转向稳定性和操作可行性方面具有显著的优势。  相似文献   

7.
针对典型水上交通场景交汇水域,研究了1种数据驱动的船舶轨迹预测与航行意图识别方法。设计CNN+LSTM组合神经网络,通过学习交汇水域船舶的历史轨迹,以CNN+LSTM网络为编码器提取其通航环境及船舶航行时空特征,LSTM与全连接层为解码器同步输出未来时段内船舶轨迹序列和航路选择,从而形成船舶轨迹与航行意图识别模型。同时,引入Dropout网络结构描述该模型的预测不确定性,采用随机关闭CNN+ LSTM核心网络部分神经单元的方式,以相同轨迹序列作为输入获取多组相近的预测结果,根据其统计均值与方差对船舶轨迹预测的不确定性进行量化。以美国沿海某交汇水域公开AIS数据为对象开展实验,创建了该交汇水域船舶航行轨迹数据集,以输入时长60 min,采样频率3 min作为输入条件,Dropout值取0.5,实验结果表明:所提方法对未来60 min时段内的轨迹预测误差为3.946 n mile,航行意图识别准确率达87%,不确定性估计覆盖率达85.7%。与LSTM预测方法相比,当船舶操纵性发生改变时,所提CNN+LSTM模型的轨迹预测误差降低了31.6%,而且兼具船舶航行意图识别及预测不确定性估计能力,有利于智能航行与海事监管技术发展。   相似文献   

8.
《汽车工程》2021,43(7)
鉴于现有生态驾驶控制的研究多基于完全智能网联环境,不适用于传统人类驾驶汽车和网联汽车混行的交通场景,本文中以包含人类驾驶汽车和网联汽车的混合动力汽车队列为研究对象,提出一种考虑驾驶员操作误差的分层生态驾驶控制方法。基于随机模型预测控制算法设计上层控制器以实现车队机动性、燃油经济性和舒适性多目标优化,采用自适应等效燃油消耗最小化策略设计下层控制器以优化车辆发动机与电池的功率分配。仿真结果表明,所提出的方法可有效降低驾驶员操作误差导致的车队中混合动力汽车速度轨迹的偏移量,车辆平均油耗降低2.82%。  相似文献   

9.
车辆转向轻便性人-车-路闭环系统计算机仿真研究   总被引:1,自引:0,他引:1  
对车辆转向轻便性建模仿真中的人-车-路闭环系统建模方法进行了阐述,提出了一种在地面坐标系统中求驾驶员预瞄轨迹误差的数值解法。该方法使用二分法求解直线与双纽线的交点,避免了使用一般解法出现增根且难以取舍以及使用复杂的非线性方程求根函数时计算量大的问题,能够方便地计算出驾驶员预瞄轨迹误差,使最优预瞄驾驶员模型能够适用于航向角大范围变化的转向轻便性试验仿真。  相似文献   

10.
针对自动驾驶车辆系统中的车辆控制问题,采用一种基于模型预测控制的横纵向协调控制方法,实现车辆的轨迹跟踪控制。所设计的控制器将车辆横向控制问题、纵向控制问题综合考虑,使用模型预测控制方法将轨迹跟踪控制问题转化为优化问题,以位置和速度误差为优化目标,同时考虑控制的平滑性,最终求解出最优的控制输入。仿真结果表明:所设计的控制器能达到较好的控制效果。  相似文献   

11.
为提高智能车辆弯道换道的安全性能,对其换道轨迹跟踪控制进行了研究。考虑到纵向速度、横向速度及横摆角速度对换道过程的影响,建立了非完整约束条件下车辆的运动学和动力学模型。基于积分反演方法设计了外环车辆位姿控制器,将换道轨迹跟踪问题转换为在任意初始误差下跟踪参考位姿问题,基于非线性积分滑模控制方法设计了内环的动力学控制器,实现了对车辆运行速度的跟踪,分析了该控制系统的稳定性和收敛性。仿真结果表明,所建立的控制系统可保证跟踪误差全局一致有界收敛,具有较快的收敛性和对时变参数不确定性的鲁棒性。  相似文献   

12.
针对自动驾驶货车相较于普通乘用车具有较大模型不确定性、执行器偏差以及存在曲率扰动等外部影响因素导致路径跟踪精度不足问题,本文提出一种基于鲁棒模型预测控制(robust model predictive control,RMPC)的分层式控制方法。首先,在转角增量式控制误差模型的基础上,根据实际车辆系统与标称模型之间的偏差,设计鲁棒控制律并构建上层多目标约束RMPC控制器,提高跟踪精度。然后,针对自动驾驶货车不足转向以及定位误差问题,设计下层转角补偿器和基于中值滤波的状态估计器,改善执行响应,提升车辆稳定性。最后,通过TruckSim/Simulink联合仿真和实车试验验证,结果表明:所提出的控制方法能够有效处理模型失配和不确定性扰动,具备良好的鲁棒性和适应性。  相似文献   

13.
自动驾驶汽车需具备预测周围车辆轨迹的能力,以便做出合理的决策规划,提高行驶安全性和乘坐舒适性。运用深度学习方法,设计了一种基于长短时记忆(LSTM)网络的驾驶意图识别及车辆轨迹预测模型,该模型由意图识别模块和轨迹输出模块组成。意图识别模块负责识别驾驶意图,其利用Softmax函数计算出驾驶意图分别为向左换道、直线行驶、向右换道的概率;轨迹输出模块由编码器-解码器结构和混合密度网络(MDN)层组成,其中的编码器将历史轨迹信息编码为上下文向量,解码器结合上下文向量和已识别的驾驶意图信息预测未来轨迹;引入MDN层的目的是利用概率分布来表示车辆未来位置,而非仅仅预测一条确定的轨迹,以提高预测结果的可靠性和模型的鲁棒性。此外,将被预测车辆及其周围车辆组成的整体视为研究对象,使模型能够理解车-车间的交互式行为,响应交通环境的变化,动态地预测车辆位置。使用基于真实路况信息的NGSIM(Next Generation SIMulation)数据集对模型进行训练、验证与测试。研究结果表明:与传统的基于模型的方法相比,基于LSTM网络的轨迹预测方法在预测长时域轨迹上具有明显的优势,考虑交互式信息的意图识别模块具备更高的预判性和准确率,且基于意图识别的轨迹预测能降低预测轨迹与真实轨迹间的均方根误差,显著提高轨迹预测精度。  相似文献   

14.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

15.
为提高未来自动驾驶车辆对弱势道路使用群体的感知和决策融合的可靠性,本文提出一种基于目标检测算法(YOLOv5)、多目标跟踪算法(Deep-Sort)和社交长短时记忆神经网络(social-long short-term memory,Social-LSTM)的行人未来运动轨迹预测方法。结合YOLOv5检测和Deep-Sort跟踪算法,有效解决行人检测跟踪过程中目标丢失问题。提取特定行人目标历史轨迹作为预测框架的输入边界条件,并采用Social-LSTM预测行人未来运动轨迹。并对未来运动轨迹进行透视变换和直接线性变换,转换为世界坐标系中的位置信息,预测车辆与行人的可能未来碰撞位置。结果显示目标检测精度达到93.889%,平均精度均值达96.753%,基于高精度的检测模型最终轨迹预测算法结果显示,预测损失随着训练步长的增加呈递减趋势,最终损失值均小于1%,其中平均位移误差降低了18.30%,最终位移误差降低了51.90%,本研究可为智能车辆避撞策略开发提供理论依据和参考。  相似文献   

16.
为对智能车周围环境中车辆的行驶轨迹做出合理、有效的预测,提出了一种基于行为识别和曲率约束的车辆轨迹预测方法。首先,接收感知得到的障碍物信息,结合高精度地图提供的车道线信息,对车辆进行行为识别;然后建立s-l坐标系,将车辆运动分解为沿车道线方向(纵向)的运动和垂直于车道线方向(横向)的运动,依据行为识别结果得到车辆在横、纵向运动的多项式方程;再以高精度地图中的车道线曲率作为约束,筛选出一条最优的预测轨迹。实车实验结果表明,在车道保持、换道和转弯3种基本行为下,车辆在4 s内的轨迹平均预测误差分别为:0.52,0.51和1.03 m,较CTRA模型预测误差分别减小了1.81,4.48和5.49 m,单个车辆轨迹预测平均耗时为0.103 ms,验证了本文中所提方法的有效性、准确性和实时性。  相似文献   

17.
针对目前轨迹预测研究中交互建模方法使用的图注意力网络(GAT)为静态注意力,无法有效捕捉复杂道路场景中车辆间交互的问题,提出了一种基于编码器-解码器架构的动态图注意力网络(ED-DGAT)预测高速公路环境中运动车辆的未来轨迹。编码模块使用动态图注意力机制学习场景中车辆间的空间交互,采用状态简化动态图注意力网络建模解码阶段车辆运动的相互依赖,最后使用NGSIM数据集评估所提出的模型,并与长短时记忆(LSTM)、联合社交池化与长短时记忆(S-LSTM)、联合卷积社交池化与长短时记忆(CS-LSTM)算法模型进行对比分析,结果表明,预测轨迹的均方根误差(RMSE)降低了25%,且模型的推理速度为CS-LSTM模型的2.61倍。  相似文献   

18.
为解决自动驾驶汽车在高速公路安全换道问题,提出了一种基于深度强化学习算法的换道跟踪控制模型,并进行了仿真实验。采用五次多项式方法,建立车辆换道路径模型,并给出跟踪误差函数;将车辆三自由度动力学模型与深度强化学习框架相融合,搭建换道路径跟踪控制模型;通过深度确定性策略梯度(DDPG)算法来更新该模型;学习得到换道路径跟踪的最佳转向角,来控制车辆完成换道过程。结果表明:在100 km/h车速条件下,本方法控制的横向位置误差绝对值的最大值接近0,角偏差绝对值最大值为10 mrad;所提出的方法相比传统的模型预测控制方法而言,轨迹跟踪的横向位置误差和角误差更小。因而,该模型能够实现高速环境下的自主换道过程,这对保证交通安全和缓解交通有意义。  相似文献   

19.
主要讨论了使用车车通信技术来提高车辆整体安全性的概念。通过使用预测传感器为驾驶员提供周围的环境信息,提高车辆的安全性,同时介绍了该技术自身发展所受到的限制。  相似文献   

20.
由于夜间、雨雪天等环境下,司机驾驶时能见度往往大幅降低,从而对行车安全问题造成极大影响。驾驶员在驾驶中主要依靠车前的大灯识别路况,但是驾驶员在驾驶过程中容易忽略远近光灯的切换,不仅导致驾驶员无法了解前方路况,也会干扰对方车辆对路况的判断。针对汽车驾驶过程中由于光线不足或驾驶员对灯光操作不当等因素引起的交通事故问题,本文设计了一种可自动调节的远近光灯。该设计选用测距传感器、光线传感器、车辆速度传感器、测线速传感器和颜色识别等传感器,通过信息采集对灯光进行自动控制,可避免驾驶员因主观判断失误和操作不当等人为因素出现灯光切换问题,从而引发的安全事故。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号