共查询到3条相似文献,搜索用时 0 毫秒
1.
图像景深和天空亮度值的求取是图像复原方法去雾的核心问题,但目前的去雾算法都是基于一定的假设条件来求取这2个值的,对于色彩单调、天空区域较大的内河图像去雾效果不理想。通过对内河航道视频图像的研究,提出将直方图多峰均值法和位平面分解法相结合的方式来求得天空亮度值并分割天空区域;采用分区域的景深计算方法求得图像任意一点的景深值。然后基于大气散射模型,完成内河雾天单幅图像的去雾处理。为了客观评价去雾后图像的质量,从图像的可见边数目比、平均梯度比和图像熵值三方面进行了去雾效果的比较。实验证明,该算法对内河航道图像有良好的去雾效果。 相似文献
2.
针对数字孪生过程中,交通雾霾图像的采集受天气限制,数据库获取困难导致样本不足等问题,提出了一种新的大气加雾模型,并用于扩展不同浓度的交通雾霾图像数据库。首先,结合暗特征原理,求解大气光值,并提出了一种基于区域方差的大气光补偿方法来获取大气光估计;其次,利用颜色衰减先验估计场景深度,求解初始透射率;然后构建了图像大气加雾模型,将计算的大气光估计与大气加雾透射率代入模型,并利用雾霾系数调整加雾浓度;最后设计了多组交通视频加雾实验并进行评价。实验结果表明,提出的算法能随着预置雾霾系数增大,使得图像主观上明显趋于模糊,客观指标随之逐步发生变化,图像降质规律与真实的含雾场景基本一致,可用于扩充雾霾数据集,具有很好的有效性和实用性。利用不同去雾算法评价对比加雾图像可知,复原图像效果与针对实际图像的去雾效果基本无异,进一步反向验证了加雾模型的有效性。 相似文献
3.
雾霾天气下,交通图像采集设备获取的降质图像含有较多噪声,图像边缘不突出,整体偏暗且对比度不高,灰白不清。针对传统交通图像滤波和去雾算法存在着滤波效果和边缘保持能力不能兼顾,容易出现噪声斑块,导致去雾后图像质量较低的问题,在传统梯度双边滤波基础上,设计了一种新的梯度相似度核,提出了基于改进梯度相似度核的雾霾天气下交通图像去雾算法。新算法首先将采集的含雾图像转换到Lab颜色空间,提升色域宽度,再利用改进梯度相似度核和空间相似度核分别计算图像中每一像素点与滤波框内临近像素点的梯度相似度和空间相似度权值,根据权值对图像进行滤波处理,然后将其转换到RGB颜色空间。最后根据大气光散射模型和暗通道先验原理,对滤波后的交通图像进行去雾处理,得到复原图像。试验结果表明:与传统双边滤波和梯度双边滤波算法相比,使用新算法处理后的复原图像峰值信噪比、归一化灰度差平均提升了13.25%、9.41%和21.76%、22.7%。新算法在保证了滤波效果,避免“噪声斑块”的同时,能够尽可能保持图像边缘细节信息,提升了雾霾天气下交通图像的去雾质量,对加强交通监控,保障交通安全有十分重要的应用价值和现实意义。 相似文献