首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
应用风险识别技术,按照三类危险源的分类方法确定道路交通安全风险的致灾因素,并对致灾因素的致害情况进行分析,在此基础上建立道路交通安全风险预警体系,可由此确定道路交通安全风险预警的范围及周期.  相似文献   

2.
赵学刚 《交通标准化》2009,(15):218-221
应用风险识别技术,按照三类危险源的分类方法确定道路交通安全风险的致灾因素.并对致灾因素的致害情况进行分析,在此基础上建立道路交通安全风险预警体系,可由此确定道路交通安全风险预警的范围及周期。  相似文献   

3.
路径的感知时间主要受定量和随机两方面因素的影响.在实际的交通网络中,由于时间价值观的不同,道路使用者会根据习惯、偏好、信息而对出行时间、费用、道路拥挤等诸多影响因素做出不同的反应。本文通过综合考虑定量和随机两方面因素的影响效应,建立了基于感知时间的交通分配模型,设计了求解该模型的延迟加载算法。最后结合算例验证了算法的有...  相似文献   

4.
面向车辆换道风险预测时特征差异大、样本不均衡、参数调优时间久的问题,将高精度微观车辆轨迹数据与超参数优化机器学习方法相结合,提出了一种可应用于智能网联车辆(ICV)的交织区换道风险识别与预警方法;基于无人机航拍视频,从广域视角提取了城市快速路交织区时间精度为0.1 s、空间精度为每像素0.1 m的换道轨迹,测算了车辆间距、矢量速度、加速度、接近率、速度角度等换道风险感知信息;引入考虑近邻车辆信息的换道TTC模型,以反映车辆汇入或汇出主线的迫切需求,描述其在不同位置的换道行为差异性;结合15分位数法和四分位差法,划分了换道风险预警等级;基于准确率、真阳性率、灵敏度等多项评价指标,遴选并对比了线性分类器、支持向量机、K近邻以及RUSBoost模型换道风险预测结果,得出交织区换道风险实时预警优选模型,针对优选模型进行了超参数优化与验证。研究结果表明:RUSBoost模型为优选模型;超参数优化机器学习方法迭代至第24次时,RUSBoost具有最小误差与最佳点超参数;RUSBoost、BRUSBoost优化模型预测准确率分别为91.40%、99.80%,AUC分别为0.96、0.99;BRUSBoost优化模型对于Ⅰ级、Ⅲ级换道预警精准率分别提升了50.9%、41.2%,有效改善了极端风险换道条件更复杂也更不易预测的缺陷。研究成果有助于智能网联车辆换道决策与轨迹优化,指导交管部门制定ICV动态预警方案。  相似文献   

5.
提出了一种车辆变道辅助决策方法, 向驾驶人提供变道行为决策; 构建了由车载GPS、相机传感器和雷达组成的行车环境信息传感装置, 利用非采样B样条曲线模型对车道线建模, 通过控制点位置求解与搜索策略实现车道线的检测、跟踪与类型识别; 根据车道线信息确立有效行车区域, 并建立了一种动态概率网格的行车环境几何模型, 对有效行车区域进行紧凑型表征; 考虑了车辆对行车环境表征结果可靠性的影响, 根据高斯分布将车辆位置信息映射到动态概率网格中, 计算了每个行车单元的占用概率; 将车道线信息与网格单元占用概率作为初始节点状态参数, 输入贝叶斯决策网络, 估计概率网格单元的占用状态, 量化输出当前行车环境表征结果以及不变道、向左变道、向右变道3种变道决策的期望效用值, 通过计算各决策的期望效用值比率确定最优变道决策。试验结果表明: 在场景1中“向左变道”决策的期望效用值最大, 为0.70, 视为最优决策, 在其动态概率网格中, 右侧车道线“实线”状态参数为100.00%, 因此, “向右变道”决策效用期望值最小, 决策系统输出的最优决策“不变道”符合中国交通法规, 也表明检测车道线类型的必要性; 场景2的“不变道”和“向右变道”决策期望效用值分别为0.43和0.44, 比率接近1, 无法判断最优决策, 驾驶人可根据经验决定是否变道。  相似文献   

6.
针对多智能车辆协同驾驶中的动态避碰问题,构建了一种面向智能网联车辆碰撞风险检测与协同避碰路径规划的互动速度障碍算法;基于人工势场理论构建了车辆碰撞风险势场,量化了车辆碰撞风险强度与碰撞风险区域;基于车辆驾驶行为交互作用构建了互动速度障碍算法,确定了冲突车辆碰撞风险的协同规避条件与规则;基于车辆动力学约束构建了动态窗口法,确定了碰撞风险规避可行速度解集;基于模型预测控制原理,应用最优化理论构建了车辆碰撞风险规避路径规划模型;通过构建智能网联环境下单冲突车辆、多冲突车辆、瓶颈区冲突车流避碰仿真场景,测试了提出的碰撞风险规避算法的有效性,并与其他避碰算法进行了控制效果对比。研究结果表明:相较于其他对比算法,互动速度障碍算法控制下的安全性能提升了8.6%以上,效率性能提升了9.6%以上,说明提出的互动速度障碍算法通过协同冲突车辆的避碰行为可有效降低冲突车辆避碰速度与轨迹波动,可有效规避非线性速度与轨迹冲突车辆间的碰撞冲突,并可避免瓶颈区多车辆碰撞事故与明显车流波动;在瓶颈区大范围车辆冲突中,相较于其他避碰算法,提出的避碰算法可使车辆的通行效率提升10.42%,使车辆的碰撞风险降低47.32%。由此可见,该算法在协同大规模冲突车辆的避碰行为、降低车辆碰撞风险与运行延误上具有良好性能。  相似文献   

7.
为了解预期功能安全(SOTIF)相关危险致因在基于智能感知的列车辅助驾驶系统(IATDAS)中的传播特性,提升针对该类系统的危险控制能力,本文提出基于复杂网络的IATDAS系统危险致因传播模型。该模型在SOTIF危险致因网络的基础上,提供了全局容量-负载传播机制,能有效刻画IATDAS系统的危险致因传播机制。案例分析结果表明:本文所提模型能够解决复杂致因关系下既有模型与系统实际情况不符的问题,如对于具有较长后续传播路径的致因,本文模型能够刻画其较难导致危险的实际特征;依据本文模型实施传播控制,可以显著降低危险致因的传播速度,如对影响节点范围大、前期影响节点数量增加快的危险因素进行控制时,可使其平均传播速度降低68%,比随机控制策略多降58%。该模型可以为IATDAS系统的SOTIF相关危险控制提供决策基础。  相似文献   

8.
在贵州省G246公路小半径弯坡路段开展大型载货汽车和小汽车驾驶员自然驾驶试验,基于Begaze软件与统计学方法,分析了两类驾驶员注视点分布特征与小半径弯坡路段转弯方向、半径、坡度的关系;研究了左转、右转方向驾驶员瞳孔直径、信息获取能力与速度的关系。研究结果表明:大型载货汽车驾驶员在小半径弯坡路段中行驶时,主要关注车头前方15~25 m区域,对后方车辆关注度不足;小汽车驾驶员关注的区域更远,会关注对向来车和道路线形走向;转向和曲线半径是影响驾驶员关注点的主要因素,左、右转时驾驶员主要关注道路中央标线、右侧道路边线,且应着重加强半径小于30 m弯坡路段的视觉引导有效性;大型载货汽车驾驶员过弯时瞳孔直径和信息获取能力的峰值位置与弯道中央并不重合,现有将凸面镜等提示性施设设置在弯道中央的处理措施并不适宜大型载货汽车。  相似文献   

9.
为了有效地确定航路安全间隔与评估碰撞风险, 研究了基于通信、导航、监视(CNS) 定位误差的侧向碰撞风险问题。运用多维随机变量协方差矩阵, 给出了CNS性能环境下侧向定位误差分布函数, 建立了给定间隔下基于CNS定位误差的侧向碰撞风险模型, 并对侧向碰撞风险进行了评估计算。计算结果表明: 某航路侧向碰撞风险为4.8×10-13, 在安全目标水平5.0×10-9之内, 因此, 该航路在现有的CNS性能环境下满足安全目标水平要求。  相似文献   

10.
采用连续图像帧作为输入,挖掘连续图像帧之间的时序关联信息,构建一种融合时序信息的多任务联合驾驶环境视觉感知算法,通过多任务监督联合优化,实现交通参与目标的快速检测,同时获取可通行区域信息;采用ResNet50作为骨干网络,在骨干网络中构建级联特征融合模块,捕捉不同图像帧之间的非局部远程依赖关系,将高分辨率图像通过卷积下采样处理,加速不同图像帧的特征提取过程,平衡算法的精度和速度;在不同的图像帧中,为了消除由于物体运动产生的空间位移对特征融合的影响,且考虑不同图像帧的非局部关联信息,构建时序特征融合模块分别对不同图像帧对应的特征图进行时序对齐与匹配,形成融合全局特征;基于共享参数的骨干网络,利用生成关键点热图的方法对道路中的行人、车辆和交通信号灯的位置进行检测,并利用语义分割子网络为自动驾驶汽车提供道路可行驶区域信息。研究结果表明:提出的感知算法以多帧图像代替单一帧图像作为输入,利用了多帧图像的序列特性,级联特征融合模块通过下采样使得计算复杂度降低为原来的1/16,与CornerNet、ICNet等其他主流模型相比,算法检测精确率平均提升了6%,分割性能平均提升了5%,并保持了每秒12帧图像的处理速度,在检测与分割速度和精度上具有明显优势。  相似文献   

11.
考虑风险规避和认知更新的日常择路行为演进   总被引:1,自引:0,他引:1  
为了刻画出行者的日常择路行为, 利用动力学系统方法和不动点理论, 建立了一个集成风险规避和认知更新的演化模型, 分析了演化过程的稳定性, 并在一个简单网络上进行了验证。发现在模拟开始的前15 d内, 出行时间预算、路径期望出行时间、实际出行时间以及路径流量都出现了较大的波动, 但经过大约30 d的摸索以后, 开始趋向于随机用户均衡状态。分析结果表明: 模型所设计的择路演化过程类似于经典的相继平均算法的计算过程, 可以确保收敛到稳定状态, 并与初始状态参数的取值无关。  相似文献   

12.
为了量化描述不同道路驾驶场景下驾驶行为的动态变化过程与不良驾驶程度, 研究了不良驾驶行为谱的构建与分析方法; 基于车辆行驶轨迹关键参数建立驾驶行为谱; 应用风险度量方法量化4种不良驾驶行为, 包括不良跟驰、蛇形驾驶、速度不稳与不良换道; 基于驾驶行为谱建立了不良驾驶行为谱; 基于交通流量-密度关系与驾驶行为统计参数的差异对交通流状态进行划分; 在不同交通流状态下, 使用四分位差法确定了不良驾驶行为特征参数阈值; 基于特征参数阈值计算每个驾驶人的不良驾驶行为得分; 使用CRITIC赋权法确定了不良驾驶行为的权重, 为每个驾驶人计算不良驾驶行为谱特征值; 为了验证方法的有效性, 使用无人机交通视频采集了上海市的车辆行驶轨迹数据, 分析了小汽车不良驾驶行为特征; 通过专家打分的方法对不良驾驶行为谱特征值进行验证。分析结果表明: 基于驾驶行为参数的交通流状态聚类方法将数据中的交通流状态分为自由流、饱和流、拥堵流3类; 聚类方法比基于基本图的交通流状态划分方法更适合驾驶行为分析; 不同交通流状态下的不良跟驰、蛇形驾驶、速度不稳特征参数分布明显不同, 拥堵流状态下的不良跟驰、蛇形驾驶、速度不稳极端值出现更频繁, 而不良换道特征参数在各交通流状态下有相似的分布; 蛇形驾驶、速度不稳、不良换道的特征参数阈值随交通流密度上升而上升; 使用CRITIC赋权法计算的不良跟驰、蛇形驾驶、速度不稳、不良换道的权重分别为0.19、0.33、0.37、0.11;自由流、饱和流、拥堵流的不良驾驶行为谱特征值的分布范围相近, 均处于0与0.4之间; 专家的不良驾驶行为评价与不良驾驶行为谱特征值一致。可见, 不良驾驶行为谱的构建与特征值计算方法能够使用车辆行驶轨迹数据自动辨识不良驾驶人, 具有客观性、适应性以及可靠性, 能及时发现不良驾驶人, 给驾驶人提供安全提示, 为交通管理部门提供交通安全预警的技术支持。  相似文献   

13.
基于船舶自动识别系统轨迹,构建了船舶轨迹静态相异度模型、动态相异度模型以及组合相异度模型,包括轨迹起点和终点相异度模型、轨迹长度相异度模型、轨迹空间分布相异度模型、轨迹航速均值相异度模型、轨迹航向均值相异度模型、轨迹航速标准差相异度模型和轨迹航向标准差相异度模型;采用KNN分类算法进行轨迹分类,分析了单个相异度模型的有效性和时效性,对比了单个相异度模型和组合相异度模型下轨迹分类效果,研究了组合相异度模型中相异度模型的类别和权重对轨迹分类的影响;分别以内河航道和港口水域船舶轨迹进行试验。试验结果显示:在采用单个相异度的情况下,就分类效果而言,轨迹起点和终点相异度模型和轨迹航向均值相异度模型在内河航道和港口水域船舶轨迹分类效果均优于其他模型,而基于轨迹航速均值相异度模型和轨迹航速标准差相异度模型的轨迹分类效果最低,就分类效率而言,基于航速、航向均值和标准差的相异度模型耗时明显低于其他3个相异度模型;采用组合相异度进行轨迹分类,内河航道和港口水域船舶轨迹分类结果的基于精确率和召回率的宏平均值和微平均值均能接近99%;将组合相异度中相异度类别数由4个增加到7个,轨迹分类评估结果进一步得到提高。因此,单个相异度模型中以轨迹起点和终点相异度模型、轨迹航向均值相异度模型以及轨迹空间分布相异度模型分类效果最优且稳定,而轨迹空间分布相异度模型和轨迹长度相异度模型耗时明显高于其他方式,各相异度模型在不同场景中的适应性基本相似,通过增加组合相异度中相异度类别能够提高轨迹识别效果。  相似文献   

14.
为保证列车队列运行安全并提高队列稳定性,研究了列车队列稳定性模型验证与控制策略优化问题;基于车-车通信的列车队列采用等空间间隔、等时间间隔和变时距3种控制策略,利用随机价格时间博弈自动机,建立了包含领航列车和跟随列车的队列控制模型,分析了模型的队列稳定性;在保证列车运行安全的前提下,以列车的相对位置差、相对速度差和时间间隔差为成本函数,通过队列随机价格时间博弈自动机模型获得控制策略集;利用Q-Learning方法得到队列的最优驾驶策略,验证队列运行的安全性和稳定性;结合列车运行追踪场景,进行队列的稳定性分析。仿真结果表明:通过形式化验证,采用3种控制策略下的队列安全性得到了保证;通过随机价格时间博弈控制、协方差优化控制和Q-Learning方法对比PID控制,等空间间隔策略下的队列稳定性误差最大值分别减小到了0.19%、0.18%和0.11%,等时间间距策略下的队列稳定性误差最大值分别减小到了30.21%、10.34%和9.24%,变时距策略下队列稳定性误差最大值分别为118.27%、56.09%和39.67%,可见,采用Q-Learning方法的随机价格时间博弈理论能在安全前提下提高列车队列稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号