首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 484 毫秒
1.
为提高运动车辆定位可靠性与精度,研究了基于交通无线传感器网络的运动车辆定位系统.根据车辆位置区域随速度变化的规律,提出了一种变区间搜索量子粒子群算法对测量的车辆定位参量进行坐标粗估计,由于噪声干扰和信号传输延时,坐标粗估计值存在一定的误差.根据车辆的运动特性引入机动目标的当前统计模型,采用扩展Kalman滤波对坐标粗估计值存在的误差进行修正,以定位速度与精度为评价指标对定位方法进行了验证.验证结果表明:无线传感网络节点可大量布设的特点提高了定位可靠性;量子粒子群中引入变区间使定位速度提高了39.13%;Kalman误差修正使得定位精度提高了56.48%.可见,本文方法可以有效提高运动车辆定位速度与准确性.  相似文献   

2.
为提高磁悬浮列车的行车安全和效率,采用多传感器信息融合技术对中低速磁悬浮列车进行测速定位,以交叉感应回线测速定位和雷达传感器对进行相对定位,以查询应答器来实现绝对定位。利用粒子滤波算法对中低速磁悬浮列车测速定位的精度和可靠性进行分析,并用MATLAB仿真进行验证,证明该融合结构和融合算法能够提高列车的定位精度。  相似文献   

3.
为了兼顾车辆自适应巡航控制(ACC)系统的跟踪控制效果和实时性, 提出了基于显式模型预测控制(EMPC)理论的车辆多目标自适应巡航控制方法; 基于车辆间运动学关系建立自适应巡航控制运动学模型, 根据预测控制理论推导预测时域内的跟踪误差预测模型, 并确定车辆安全性、跟踪性、经济性和舒适性等多性能目标函数和约束条件; 运用显式模型预测控制中的多参数规划理论, 将基于反复在线优化计算的闭环模型预测控制系统转化为与之等价的显式多面体分段仿射(PPWA)系统, 通过离线计算获得期望加速度与距离误差、速度误差、自车加速度和前车加速度等状态变量之间的最优控制律, 并设计在线查表的搜索流程, 通过定位当前状态所处分区, 并应用该分区的显式控制律实现自适应巡航控制; 进行了纵向跟踪工况仿真验证, 并与传统MPC-ACC控制方法进行对比。对比结果表明: 在前车正弦加减速工况下, EMPC-ACC控制器单步运算速度比MPC-ACC控制器平均提升了53.51%, EMPC-ACC控制下的平均距离跟踪误差为0.220 3 m, 平均速度误差为0.340 1 m·s-1; 在前车阶跃加减速工况下, EMPC-ACC控制器单步运算速度比MPC-ACC控制器平均提升了72.96%, EMPC-ACC控制下的平均距离跟踪误差为0.331 9 m, 平均速度误差为0.399 1 m·s-1。可见, 提出的EMPC-ACC控制算法在保证纵向跟踪性能的前提下, 有效地提高了自适应巡航控制的实时性。   相似文献   

4.
对具有输入时滞的二轮自平衡车系统, 设计了一种自适应滑模控制算法; 采用拉格朗日函数建立二轮自平衡车系统的动力学数学模型, 并在系统模型中考虑实际中存在输入时滞, 以及在处理输入时滞时所引入的未知扰动; 对变换后的输入矩阵做奇异值分解, 进一步设计了对扰动参数具有自适应估计能力的自适应滑模控制器; 基于Lyapunov稳定性理论, 保证了闭环系统鲁棒渐近稳定; 试验采用陀螺仪MPU-6050以及加速度传感器构成小车姿态检测装置。分析结果表明: 当控制参数较小时, 系统的超调量较小, 然而系统的调节时间较长; 当控制参数较大时, 系统产生了较明显的超调量, 然而系统的调节时间缩短了; 当外加扰动较小时, 车体速度变化小于0.08 m·s-1, 倾角角速度变化小于0.6°·s-1; 当外加扰动较大时, 车体速度变化小于0.10 m·s-1, 倾角角速度变化小于0.8°·s-1; 初始倾角为5°时, 车体速度保持在0.005 m·s-1范围内, 倾角角速度保持在0.022°·s-1范围内; 初始倾角为10°时, 车体速度保持在0.007 m·s-1范围内, 倾角角速度保持在0.031°·s-1范围内。可见, 自适应滑模控制算法能在引入适量干扰和不同初始车体倾角的情况下, 使小车自主调整并迅速恢复稳定状态。   相似文献   

5.
为明确山区隧道出入口区段的车辆运行特性和驾驶行为,揭示隧道洞口交通事故的发生机制,在高速公路和城市快速路各选择3座隧道,采集了小客车和货车在隧道出入口区段的断面速度,高速公路单个断面观测样本大于500 veh,快速路隧道单个断面样本大于1 100 veh,基于断面数据分析了车辆行驶速度的变化规律和影响因素,并建立了运行速度预测模型。分析结果表明:驾驶人临近隧道洞口时会减速,小客车速度降幅为12~21 km·h-1,货车速度降幅为2~10 km·h-1,货车速度降幅低于小客车;洞口位置小客车运行速度大于80 km·h-1,货车运行速度大于70 km·h-1;高速公路隧道出入口段的车速范围为75~110 km·h-1,快速路隧道出入口段的车速范围为60~88 km·h-1,高速公路隧道出入口段的车速普遍高于城市快速路隧道; 驾驶人进入隧道洞内适应环境之后会加速行驶,驶出隧道时有加速行为,但当隧道出口前方有小半径弯道和互通立交时,驾驶人会减速以适应前方的道路条件;隧道入口前100 m至洞口范围内的车辆减速度最大,货车减速度范围为0.23~0.58 m·s-2,小客车减速度范围为0.47~ 0.70 m·s-2;同一断面的速度观测值存在较强的离散性,表明车辆之间存在明显的纵向干涉,容易发生追尾事故。   相似文献   

6.
为解决谐波和间谐波参数估计受噪声影响的难题,从被检测信号噪声的基本特性出发,提出了一种基于现代互谱、总体最小二乘、旋转不变参数估计和改进普罗尼技术的谐波和间谐波参数估计新方法.该方法采用互谱技术处理不同采样序列的互相关矩阵;根据不同时刻白噪声相互独立的原理划分信号子空间和噪声子空间,并结合总体最小二乘与旋转不变参数估计判定被检测信号的频率;最后,根据白噪声均值为0的特性,采用改进普罗尼技术估计信号分量的幅值和初始相角.仿真结果表明,该方法在低信噪比环境下可检测出多个子信号,且频率的相对误差均小于0.4%,而耗时仅0.058 s,具有良好的估计精度和估计效率.  相似文献   

7.
以Tsai两步法为摄像机标定原理,提出了一种车辆速度视频测量方法,并对摄像机标定误差和车速检测误差进行了分析。首先利用Tsai两步法得到摄像机的内部和外部参数,然后将图像空间提取出的运动车辆特征点位移转换到世界坐标系,最后利用帧差时间求得车辆的瞬时速度。实验结果表明,基于摄像机标定的车辆速度视频测量方法,具有简单实用、鲁棒性强、精确度高等优点,满足车辆视频测速系统的要求。  相似文献   

8.
应用流形学习方法非线性融合信号在不同小波参数下中央尺度对应的小波包络,研究了强背景噪声下车辆传动系统振动信号故障瞬态脉冲包络的有效提取问题,并与传统信号时频分解方法进行了对比研究;采用不同小波参数对振动信号进行连续小波变换,提取了每组参数下中央尺度上的小波包络;采用基尼指数选择若干包含故障瞬态脉冲信息的小波包络,构造了高维小波包络矩阵;采用局部切空间排列算法对高维小波包络进行流形融合,获得了反映故障瞬态脉冲包络本质结构的小波包络流形;为了验证所提方法的有效性和优越性,采用不同方法对轨道车辆轮对轴承和汽车变速齿轮箱的故障振动信号进行了对比分析。研究结果表明:在分析轴承外圈故障信号时,所提方法基尼指数比传统信号时频分解方法提高27.32%以上;在分析齿轮磨损故障信号时,所提方法基尼指数比传统信号时频分解方法提高26.74%以上。可见,所提方法通过综合具有不同形态的变参小波包络,可以在无需优化小波参数情况下,对车辆传动系统中的不同关键部件故障振动信号具有较好的自适应性,提取的故障脉冲包络中的带内噪声少,故障脉冲特性明显,容易识别其频谱中的故障特征频率,是检测车辆传动系统故障的一种有效方法。   相似文献   

9.
针对含输入时延与通信时延的车辆队列PID控制系统,分析了其内部稳定性和队列稳定性,研究了内部稳定的充要条件,求解了完整、精确的时延边界;在内部稳定性分析中,考虑输入时延与通信时延影响下车辆队列PID控制系统为中立型双时延系统的特点,结合Rekasius代换和劳斯表,提出了关于中立算子的系统强稳定充要条件;在此基础上,为了便于PID参数的快速选取,推导了一种形式更为简练的系统强稳定充分条件;在强稳定条件下,基于特征根聚类法求解了系统完整、精确的时延边界;针对具有奇数辆跟随车的车辆队列,推导了无关车辆队列规模的输入时延上界;在队列稳定性分析中,为了保证干扰和误差沿车辆队列向后传播不发散,分析了车间误差传递函数,给出了双时延影响下队列稳定的充分条件。仿真结果表明:在含输入时延与通信时延的分布式PID控制器作用下,车辆队列控制系统可同时保证内部稳定和队列稳定;车间状态误差可在15 s内快速减小并趋近于零;在所有车辆恒速行驶时,车间保持50 m期望安全距离;在领航车以0.5 m·s-2加速和0.8 m·s-2减速时,跟随车的速度和加速度随领航车变化,并在领航车速度稳定时一致;车辆队列在不同行驶工况下,由领航车加、减速引起的车间位置误差小于0.2 m,且沿车辆队列向后传播不发散。   相似文献   

10.
基于空气动力学理论分别推导了作用在接触线上的空气阻尼和脉动风气动载荷, 并将空气动力项添加至接触线波动速度公式中进行修正; 通过风洞试验和CFD绕流仿真得到了横风环境下的气动阻力系数, 分析了不同空气阻尼下接触线波动速度的变化规律; 基于AR模型和接触网的结构特性, 建立了具有时间和空间相关性的接触网脉动风场, 通过仿真计算分析了脉动风速和风攻角对接触线波动速度的影响。研究结果表明: 静风载荷引起的接触线空气阻尼很小, 当平均风速达到30 m·s-1时, 接触线空气阻尼仅为0.3, 接触线波动速度为549.1 km·h-1左右, 因此, 空气阻尼不会对接触线波动速度产生较大影响; 当来流风攻角为60°, 平均风速不大于10 m·s-1时, 脉动风下接触线波动速度标准差和最值差分别小于1和6 km·h-1, 此时接触线波动速度相对无风情况变化较小, 脉动风载荷对接触线波动速度的影响不明显; 当风速达到40 m·s-1时, 接触线平均波动速度较无风情况下降39.39 km·h-1, 且其标准差和最值差分别达到11.84和75.98 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至474.16 km·h-1, 因此, 脉动风下风速越大, 接触线波动速度受脉动风载荷影响越显著; 当风速保持30 m·s-1, 来流风攻角为0°~30°时, 接触线波动速度标准差和最值差分别小于1和5 km·h-1, 此时脉动风载荷对接触线波动速度的影响较小; 当风攻角为90°时, 接触线波动速度标准差和最值差分别达到12.38和73.19 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至472.91 km·h-1, 因此, 脉动风下来流风越偏于水平方向, 对接触线波动速度的影响越小。   相似文献   

11.
利用大型有限元商业软件ABAQUS建立了车辆-齿轨铁路导入装置耦合动力学有限元模型;仿真了齿轨车辆通过齿轨铁路导入装置的过程,分析了车辆与齿轨铁路导入装置的动态相互作用;考虑不同参数的影响,研究了齿轨铁路导入装置振动响应、结构应力、动态接触力等动态特性响应规律.研究结果表明:随着支撑弹簧预紧力的增大,齿轮转速能更快达到...  相似文献   

12.
以修正Karman风速谱为目标谱, 基于最小信息准则确定线性滤波法自回归模型的阶数, 采用线性滤波法和谐波叠加法模拟了高速列车随车移动点的脉动风速时间历程, 并验证了模拟结果的可靠性, 对比了2种方法模拟脉动风速均值、方差、幅频、相频等特征变量以及风速分布规律的差异, 并分析了2种方法的计算效率。分析结果表明: 采用2种方法得到的脉动风速功率谱密度均围绕目标谱波动; 脉动风速均值约为0, 由于随机数的使用, 使得脉动风速峰值在个别时间点存在差异, 且在低频区域得到的仿真谱差异可能超过50%;不同风向角下计算所得脉动风速均值的差异小于2%, 且脉动风速的分布规律几乎一致; 当列车运行速度为80m·s-1, 且距地面高度10m处平均风速为25m·s-1时, 2种方法得到的脉动风速峰值均值间的差异小于1%, 表明2种方法均适用于模拟高速列车随车移动点的脉动风速; 2种方法所得脉动风速幅值均随脉动风速频率的增大而减小, 相位在-π~π内波动, 脉动风速分布在-3~3m·s-1内的差异仅为0.48%;采用2种方法所得脉动风速点数满足高斯分布, 且高斯分布拟合系数最大差异为3.15%;采用线性滤波法模拟所得脉动风速波动比谐波叠加法大7.89%, 其稳定性劣于谐波叠加法; 采用线性滤波法的计算时间约为谐波叠加法的1/9, 其计算效率远高于谐波叠加法。   相似文献   

13.
为定量化得出高速公路同一车道中前后相邻车辆的碰撞概率,从制动减速度的角度出发, 提出一种新的前后相邻车辆碰撞概率计算方法。分别考虑前后车发生碰撞的3种不同情况,推导出如果发生碰撞前车需要的最小制动减速度。基于路侧毫米波雷达获取海量车辆运行状态真实数据,包括轨迹、速度以及制动减速度的变化规律,采用广义帕累托分布(Generalized Pareto Distribution,GPD)建立制动减速度分布模型,进一步基于GPD模型计算出在不同场景下如果发 生碰撞所需最小制动减速度的发生概率,将该概率值确定为碰撞概率。研究结果表明,在本研究路段,约99.10%的加速度在[-1, 1] m·s-2 的区间范围内波动,车辆制动减速度的分布具有“长尾” 特征,较大的制动减速度占比非常小。内侧1车道、2车道加速分布比3车道的分布更为集中,大型货车的加速度分布比小客车的加速度分布更集中。最后,基于真实的危险场景数据以及模拟的典型危险场景数据进行验证,将该方法的计算结果与传统方法的计算结果相比较,表明该方法的计算结果连续,且可迅速、准确地识别各类危险场景。  相似文献   

14.
针对人工检测效率低、变形检测车定位不准、噪点剔除困难、数据处理滞后等技术难题,基于盾构隧道管片环缝灰度图像数学形态特征,通过图像滑窗方式,利用直方图均衡化、缩放、阈值判定等方法快速自动识别环缝,并依据环缝已知位置反向修正隧道里程;基于距离最小二乘法椭圆曲线拟合,建立了盾构隧道激光扫描噪点三次迭代自动剔除方法;通过对管片...  相似文献   

15.
为准确评估某新型全自动智能轨道巡检车的动力学性能,开展了轨道巡检车动力学数值仿真;轮轨接触采用非椭圆多点接触Kik-Piotrowski算法模拟,车辆系统建模过程中考虑悬挂力元非线性与轮轨接触几何非线性特性等因素,同时考虑车载设备参振影响;针对车轮踏面表面包裹高硬度聚氨酯的特殊结构,利用有限元软件ABAQUS建立了轮轨局部接触模型,采用Mooney-Rivlin橡胶模型模拟了聚氨酯特殊性质,计算了轮轨等效接触刚度;根据有限元计算结果修正了Kik-Piotrowski算法中的相关参数;基于Craig-Bampton模态综合法和多体动力学软件UM建立了车辆-轨道刚柔耦合模型;为验证仿真模型的准确性,开展了实车动力学试验;重点分析了直线和300 m小半径曲线,运行速度10~30 km·h-1工况下巡检车的振动响应。研究结果表明:车辆正常运行时,中间视觉模块垂向最大加速度大于左侧视觉模块垂向最大加速度,横向最大加速度小于左侧视觉模块横向最大加速度,车架最大加速度大于视觉模块最大加速度;车架中部易产生垂向弯曲变形,和视觉模块安装位置有胶垫减振有关;轨道巡检车在直线和300 m小半径区间运行性能整体良好,其中车辆在300 m小半径曲线段内30 km·h-1运行时,轮重减载率最大可达0.92,车架部位振动响应较大,为保证车载设备的安全性和避免车辆脱轨的风险,建议曲线段内检测速度控制在20 km·h-1左右。   相似文献   

16.
为实现实际动态交通环境下智能汽车的变道控制, 提出了基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制策略; 针对实际交通环境下目标车道车速和加速度的动态变化, 提出了智能汽车变道动态轨迹规划算法, 获得了能够避免智能汽车发生碰撞的变道轨迹的动态最大纵向长度; 设计了兼顾变道效率和乘员舒适性的优化目标函数, 优化获得了在变道轨迹最大纵向长度范围内的实时动态最优变道轨迹; 利用轨迹预瞄前馈和状态反馈相结合的类人转向控制方式, 实现了智能汽车变道动态轨迹跟踪和乘员舒适性的最优控制, 并利用硬件在环试验台验证了所提控制策略的正确性。研究结果表明: 定速工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.4%、4.8%和0.59 m·s-2; 定加速度工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.1%、4.6%和0.48 m·s-2; 变加速度激烈工况下实际与参考轨迹的侧向位移误差和最大侧向加速度分别为1.7%和0.80 m·s-2, 航向角超调后能迅速重新跟踪动态轨迹航向角; 所提控制策略可以很好地跟踪控制实际交通环境下目标车道汽车在定车速、定加速度和变加速度工况下的智能汽车动态变道轨迹, 从而能实现智能汽车最优变道, 可确保变道过程中不与目标车道汽车发生碰撞, 并兼顾变道效率和乘员舒适性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号