首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
巢马铁路马鞍山长江公铁大桥副汊航道桥为(58+168+392+168+58) m双塔三索面钢桁梁斜拉桥,斜拉索设计采用抗拉强度2 100 MPa、抗疲劳应力幅280 MPa的?15.2 mm低松弛PE镀锌钢绞线拉索。为保证高强度钢绞线斜拉索的力学及锚固性能,根据其技术指标要求,在1 860 MPa钢绞线基础上,研制2 100 MPa钢绞线及配套锚具。通过提高钢绞线原材料盘条中C、Si、Mn元素含量及改进钢丝拉拔工艺,选择直径14.0 mm的PQS92Si-HT盘条为2 100 MPa钢绞线原材料。为提高钢绞线的锚固性能,夹片选择20CrMnTi钢,夹片长度52 mm、牙高0.45 mm、锥角6°10′、表面粗糙度Ra3.2以上且表面硬度不低于56 HRC。根据2 100 MPa钢绞线锚具的载荷变化和现行锚具锚板的材料性能,锚板选择40Cr钢,并进行调质处理。对研制的2 100 MPa钢绞线及配套锚具进行单孔锚及斜拉索锚具组件疲劳试验及疲劳后静载试验。结果表明:研制的2 100 MPa钢绞线及其锚具组件均满足规范要求,可应用于马鞍山长江公铁大桥副汊航道桥。  相似文献   

2.
依托虎门二桥坭洲水道桥(主跨1 688m的双塔双跨悬索桥),系统开展了1 960MPa主缆钢丝及索股的技术开发。研制了适用于在线水浴、离线盐浴、离线铅浴等不同索氏体化方式的国产1 960 MPa钢丝盘条,性能指标优于国外同类产品。通过超高强度钢丝拉拔工艺、"双镀+电磁抹拭"热镀锌铝工艺、稳定化处理工艺,研发了抗拉强度达1 960MPa、扭转次数≥14次的高强度锌铝合金镀层钢丝,并形成完整的生产工艺体系。开发了1 960 MPa悬索桥主缆索股技术及具有优异锚固性能、静载性能、抗疲劳性能和抗滑移性能的锚固系统,实现了30 000余吨1 960 MPa镀锌铝合金钢丝索股在虎门二桥工程中的应用。  相似文献   

3.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面箱桁组合梁斜拉桥,采用平行钢丝拉索,单根斜拉索最大索力达16 000kN。索塔锚固区采用钢锚梁拉索锚固体系与平行钢丝环向预应力锚固体系相结合的方式锚固,单层预应力体系采用"#"形预应力锚固,预应力采用367mm高强度低松弛钢丝束,其抗拉强度为1 670MPa,弹性模量为2.05×105 MPa。在桥塔施工时预埋内径90mm的金属波纹管作为预应力孔道;提前进行钢丝束的编束及张拉端镦头,待塔柱模板拆除后进行钢丝穿束;钢丝穿束后先进行固定端锚板安装及固定端切丝,再进行固定端镦头;待塔柱混凝土强度满足规范要求后,采用250t穿心式油压千斤顶进行预应力张拉;预应力张拉后进行预应力孔道压浆,最后进行预应力锚口封闭,完成预应力施工。  相似文献   

4.
易莉帮  徐伟 《桥梁建设》2022,(3):121-126
斜拉桥平行钢丝斜拉索锚杯长度一般根据锚杯内钢丝的锚固长度及其他构造尺寸确定,对于修正主梁线形偏差的调整量有限。针对大跨铁路斜拉桥中由施工、制造及桥上永久荷载偏差等导致主梁成桥线形偏差较大,而现行规范中的锚杯尺寸可能存在调整量不足的问题,以某千米级公铁两用斜拉桥为背景进行平行钢丝斜拉索锚杯调整量设计研究。采用悬索理论,分析道砟容重离散性引起的斜拉索索力偏差、斜拉索弹性模量偏差及斜拉索锚固点位置偏差对斜拉索无应力长度的影响,以确定合适的锚杯放张与张拉调整量。结果表明:对于铁路斜拉桥,现行规范规定的锚杯张拉调整量基本能够满足要求,放张调整量则可能存在不足;道砟容重离散性对斜拉索无应力长度影响相对最大,设计中应预留相应的锚杯放张调整量;对300 m以上的中、长索,还应考虑斜拉索索力偏差和斜拉索弹性模量偏差的影响,预留锚杯放张与张拉调整量;斜拉索弹性模量建议取2.0×105 MPa,并考虑其在(1.9~2.1)×105 MPa范围内进行设计。  相似文献   

5.
崔巍  傅新军  陈相  支超 《桥梁建设》2020,50(2):111-116
商合杭铁路芜湖长江公铁大桥主桥为主跨588 m的双塔双索面高低塔箱桁组合梁斜拉桥,该桥2号墩桥塔采用塔梁同步施工,索塔锚固区采用钢锚梁拉索锚固体系与平行钢丝环向预应力锚固体系相结合的方式锚固。为提高测量精度,精确定位钢锚梁,在分析钢锚梁定位精度影响因素的基础上进行主桥施工控制网优化;在自然环境“零”状态、外部荷载“零”状态下对塔柱变形进行监测,获取施工误差引起的塔柱变形量,用于修正钢锚梁定位坐标;采用全站仪精密三角高程测量法、三角高程差分法、侧边交会法相结合的办法将施工控制网高程、平面坐标传递至塔柱待施工段基准点,获取塔柱待施工段基准点在施工控制网投影面的三维坐标,采用相对设站法完成钢锚梁高精度、快速定位。  相似文献   

6.
张鹏 《城市道桥与防洪》2020,(5):66-68,M0009
洞口县平溪江大桥为主跨100 m的异形钢独塔斜拉桥,跨越洞口县平溪江。该桥为双索面,塔梁墩固结体系;主梁为两侧单箱单室P-K预应力混凝土混凝土箱形梁,桥梁全宽34.6 m。拉索为平行钢丝斜拉索,冷铸锚。主塔为异形钢箱结构,拉索通过钢锚箱锚固于主塔上。主跨跨越平溪江,采用悬臂浇筑法施工;锚跨位于岸上,采用现浇支架施工。  相似文献   

7.
吉林市雾凇大桥主桥为(35+68+150+68+35)m五跨连续混凝土自锚式悬索桥,综述该桥主桥设计与计算。该桥塔梁间设置横、竖向支座和纵向阻尼器;加劲梁采用单箱三室混凝土截面,标准段梁高2.5 m,在边跨锚固段渐变至6.5 m;桥塔采用门形框架混凝土结构,高54 m,塔身及横梁均采用矩形空心截面;桥塔墩下部采用分离式承台,单个承台布置9根2.0 m钻孔灌注桩;主缆采用5.1 mm镀锌高强钢丝,吊索采用7.0 mm低松弛镀锌高强平行钢丝。设计时采用有限元软件MIDAS Civil 2006、悬索桥非线性分析软件BNLAS及SCDS平面程序对该桥进行了计算分析,结果表明该桥的各项检算均满足规范要求。  相似文献   

8.
湖北荆岳长江公路大桥主桥为(100+298)m+816m+(80+2×75)m双塔混合梁斜拉桥,索塔锚固区采用钢牛腿+钢锚梁结构。为掌握斜拉索索力在实桥索塔锚固区结构上的响应和受力机理,在该桥成桥荷载试验阶段选择南塔第26节段进行了试验测试。通过测试钢锚梁、钢牛腿的应力和变形,并与同节段索塔锚固区节段模型试验结果进行比对分析。结果表明:在试验荷载作用下,试验节段实测索力增量与理论索力增量相差不大;在相同索力增量下,实桥锚固区的应力测试值、钢锚梁的水平力和竖向力荷载承担比例均比节段足尺模型试验值略小,二者的应力分布规律基本一致,这些试验监测数据可供今后类似桥梁设计时参考。  相似文献   

9.
为给体外预应力门槛梁锚固块设计提供参考,以某4×30m预应力连续箱梁桥加固项目为背景,对该类锚固块配筋以及锚后构造措施进行设计研究。考虑该桥构造特点及其它受限因素,设计高660mm、长2 500mm的门槛梁锚固块,结合美国ACI 318规范,运用摩擦抗剪理论及《公路桥梁加固设计规范》进行锚固块配筋;在配筋设计基础上对锚后增加矩形加强块,利用有限元法分析矩形加强块尺寸对锚后箱梁受力的影响,以优化矩形加强块的尺寸。研究结果表明:该锚固块配筋保证了锚固块受力满足要求,但体外预应力对锚后箱梁产生较大的拉应力;确定采用高150mm、长500mm的矩形加强块,可减小体外预应力产生的45.5%的拉应力。实践表明,桥梁体外预应力张拉后,锚固块与原箱梁并未发现裂缝,锚固块的配筋与锚后构造措施是合理的。  相似文献   

10.
卢宁 《公路》1990,(12)
妥峡大桥是中尼公路国内段曲水~大竹卡的重点工程之一。大桥位于 K78+150处,跨越雅鲁藏布江。桥型为双孔钢桁架仰式悬索吊桥。主孔跨径100米,副孔跨径50米,全桥桥长207.70米,桥面净宽7.0米,两侧各设0.8米人行道。设计荷载为汽—20、挂—100,桥位处在海拔3500米。大桥的四根主索采用进口φ_5~S镀锌钢丝分束制束、架设,然后再集束而成。主索分束用弗氏锚头进行锚固。加劲钢桁架高度为3.0米,采用国产槽钢、角钢就地拼焊。桥面为钢板和  相似文献   

11.
斜拉桥钢锚箱式索梁锚固结构的有限混合单元法分析   总被引:4,自引:0,他引:4  
依托某斜拉桥钢锚箱式索梁锚固结构实桥静载试验实测结果,采用节段有限元模型和全桥混合有限元模型对该斜拉桥索梁锚固结构进行理论分析,比较两种方法的优缺点.结果表明:索梁锚固区钢锚箱以受压为主;节段有限元模型理论值仅在钢锚箱最外侧与实测值吻合较好,全桥混合有限元模型理论值则与实测值吻合较好.  相似文献   

12.
预应力拉索在大跨径桥梁结构中应用广泛,其火灾安全却面临严峻挑战。拉索锚头是拉索遭遇火灾高温时最薄弱的环节,若无专门的防火设计将造成极大的安全隐患,为此,以中国工程中广泛应用的热铸锚、冷铸锚和Wirelock锚三大类锚固系统为研究对象,采用平行钢丝束拉索足尺试件对其抗火性能进行研究。通过6个拉索锚头试件在有应力状态下的火灾试验(试验参数包括拉索锚固类型和应力水平),研究其温度场分布及锚固性能退化规律。试验结果表明:锚具内部温度分布不均匀,底端温度最高,前端最低;拉索锚固系统在高温下的滑移过程大致分为无滑移、滑移稳定增长和破坏3个阶段,其中热铸锚的无滑移段持续时间最长,约为60min,冷铸锚和Wirelock锚的无滑移段持续时间都在20min以内;3类试件的破坏时间即耐火极限相近;当构件破坏时,热铸锚、冷铸锚、Wirelock锚的临界温度分别为420℃~443℃、440℃~450℃、279℃~284℃;当拉索预应力水平从0.3增加到0.4时,拉索锚头耐火性能下降。  相似文献   

13.
为研究玻璃纤维增强复合材料筋(glass fiber reinforced polymer bars, GFRP筋)与混凝土的黏结性能及破坏模式,进行了9组GFRP筋与混凝土的单向拉拔试验。试验设计中考虑了GFRP筋锚固长度、GFRP筋直径及混凝土强度的变化对GFRP筋锚固性能的影响。试验结果表明:GFRP筋与混凝土间的黏结强度随筋材锚固长度及混凝土强度的增加而显著提高;对于筋材直径为12mm的试件,其峰值荷载由锚固长度30 mm对应的24. 4 kN增加至锚固长度120 mm对应的71. 5 kN;对于相同几何构造特征的试件(S-4,S-8及S-9),其峰值荷载由C30对应的55. 4 kN增加至C50对应的71. 5 kN;此外,试件的破坏模式随筋材直径及锚固长度的增加由筋材受拉断裂转变为筋材拔出破坏或混凝土劈裂破坏;试验所得的试件荷载-滑移曲线表现出典型的4阶段受力破坏特征,分别为微滑移段、滑移段、下降段和残余段。研究成果可为GFRP筋在混凝土结构中的应用提供参考。  相似文献   

14.
为研究玻璃纤维增强复合材料筋(glass fiber reinforced polymer bars, GFRP 筋)与混凝土的黏结性能及破坏模式,进行了9 组 GFRP 筋与混凝土的单向拉拔试验。试验设计中考虑了GFRP 筋锚固长度、GFRP 筋直径及混凝土强度的变化对GFRP 筋锚固性能的影响。试验结果表明: GFRP 筋与混凝土间的黏结强度随筋材锚固长度及混凝土强度的增加而显著提高;对于筋材直径为12 mm 的试件,其峰值荷载由锚固长度30 mm 对应的24. 4 kN 增加至锚固长度120 mm 对应的71. 5 kN;对于相同几何构造特征的试件 (S-4, S-8 及S-9),其峰值荷载由C30 对应的55. 4 kN 增加至C50 对应的71. 5 kN;此外,试件的破坏模式随筋材直径及锚固长度的增加由筋材受拉断裂转变为筋材拔出破坏或混凝土劈裂破坏;试验所得的试件荷载-滑移曲线表现出典型的4 阶段受力破坏特征,分别为微滑移段、滑移段、下降段和残余段。研究成果可为GFRP 筋在混凝土结构中的应用提供参考。  相似文献   

15.
S32申嘉湖高速公路上海段跨越大蒸港处主桥为矮塔斜拉桥,主跨165 m。该桥设计为塔梁固结、墩梁分离的结构型式。斜拉索为单索面,主梁为预应力混凝土单箱五室,主塔为钢-混组合结构,桥梁全宽34 m。拉索为平行钢丝斜拉索、冷铸锚,主塔锚固区采用钢锚箱的锚固方式。主桥位于曲线半径R=3 000 m的平曲线范围内,对主塔的设计提出了新的挑战  相似文献   

16.
武汉杨泗港长江大桥主桥为主跨1 700 m的双层公路钢桁梁悬索桥,该桥重力式锚碇由地下连续墙、帽梁、内衬、锚碇混凝土组成,采用型钢锚固系统(由后锚梁和锚杆组成)。锚碇基坑开挖后进行锚碇混凝土及型钢锚固系统施工,锚碇混凝土竖向分14层(每层分3块)浇筑,后锚梁和锚杆在工厂内加工制造,分批次随锚碇混凝土分层安装,通过定位支架(由后端支架、中间支架、前端支架、连接杆组成)进行空间位置调整。在该桥型钢锚固系统施工中,通过设置具有足够强度、刚度及稳定性的宽翼缘型钢定位支架,减小了分层混凝土浇筑对已定位后锚梁及锚杆精度的影响;通过无棱镜空间定位法控制锚杆前端中心位置,确保了锚杆安装精度,提高了锚杆测量速度、效率及安全性;通过对构件进行及时限位,避免了施工振动造成的构件位置偏移,有效减少了重复调整次数;通过两次钻孔成孔工艺确保了精制螺栓成孔精度。该桥型钢锚固系统安装用时120 d,其锚杆纵向偏位在10 mm内、横向偏差在5 mm内、锚固点高程偏差在5 mm内,均满足设计要求。  相似文献   

17.
桃花峪黄河大桥主桥为主跨406m的大跨度钢箱梁自锚式悬索桥。该桥吊杆-主梁锚固区采用锚箱式锚固结构,由布置在钢箱梁腹板外侧的锚固板、承压板及加劲板等组成,板杆空间交错,受力复杂。为验证该桥锚固区受力的合理性,采用ANSYS建立主梁空间节段有限元模型,对锚固区各板件的受力状况、锚固板件与箱梁外腹板焊缝受力特性及吊杆索力的扩散规律进行了分析,得到锚固区的受力特性。结果表明:吊杆索力通过锚头锚圈、垫板、承压板、锚固板、主梁腹板传递扩散到整个钢箱梁断面;锚固区各板件应力均满足规范要求,结构受力合理且应力在各板件间传递流畅。  相似文献   

18.
张家港市镇山大桥主桥为50 m+120 m+50 m自锚式悬索桥.该桥加劲梁采用预应力混凝土边箱形式,在支架上现浇施工;桥塔采用钢筋混凝土矩形截面实心柱式结构,塔高40.63 m,塔下采用整体式哑铃型承台;主缆采用φ5mm镀锌高强平行钢丝束,吊索采用φ7mm镀锌高强平行钢丝束,索架、鞍座为整体铸造钢结构.采用有限元软件MIDAS Civil 2010建立全桥模型进行总体计算,采用有限元软件MIDAS FEA建立主缆锚固区的实体模型进行局部分析,结果表明镇山大桥的结构应力均能满足规范要求.  相似文献   

19.
重庆市鹅公岩轨道大桥位于既有鹅公岩大桥上游70m处,主桥采用(50+210+600+210+50)m半飘浮体系自锚式悬索桥。加劲梁采用钢箱-混凝土混合梁,中跨及边跨为钢箱梁,锚跨及锚固段为混凝土箱梁。桥塔采用门形结构,按全截面受压构件设计。主缆采用PPWS平行钢丝索股,布置为平行双缆面,中心距为19.5m。全桥边、中跨均设吊索,吊索采用PSS平行钢丝束,上端与主缆索夹采用销铰式连接,下端与加劲梁采用锚箱承压方式连接。2个桥塔单幅承台下均布置9根3.0m钻孔灌注桩。通过在主缆锚固横梁上增设竖向隔板和水平隔板将锚固箱室分成4个小舱室,以优化锚固横梁受力。对该桥总体及局部稳定进行分析,结果表明:桥梁总体及局部稳定均满足相关规范的要求。由于建设条件的限制,该桥开创性地运用"先斜拉后悬索"的方案施工。  相似文献   

20.
岩土工程中的预应力锚索设计   总被引:3,自引:0,他引:3  
介绍锚索设计拉力确定、选用(或校核)锚索材料强度及数量、确定受拉材料强度利用系数、锚固段长度计算、灌浆设计、锚索锚头支承结构物设计、张拉力控制,提出了设计中应注意的几个问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号