共查询到20条相似文献,搜索用时 15 毫秒
1.
基于棋盘洲长江大桥北锚碇的施工,研究大体积混凝土的抗裂安全性评价指标。分别建立了支墩及基础、锚块及后浇带的有限元分析模型,重点分析了入模温度、内部最高温度及内表温差对大体积混凝土抗裂性的影响。研究表明,大体积混凝土入模温度宜控制为5℃~28℃,内部最高温度宜控制为不高于75℃,内表温差宜控制为不大于25℃,同时降温速率宜控制为不大于2.0℃/d。 相似文献
2.
3.
大体积混凝土温控施工观测及分析 总被引:2,自引:0,他引:2
大体积砼与一般的钢筋砼结构相比具有形体庞大、混凝土数量多、工程条件复杂、施工技术和质量要求较高等特点。大体积混凝土施工时遇到的普遍问题是温度裂缝。由于混凝土的体积大,聚集的水化热大,在混凝土内外散热不均匀以及受到内外约束的情况时,混凝土内部会产生较大的温度应力,导致裂缝产生。因此,大体积混凝土施工中的温度监控是控制裂缝产生的关键。总结介绍湛江海湾大桥主墩承台大体积混凝土的施工控制措施。 相似文献
4.
5.
6.
大体积混凝土冬季施工温控措施 总被引:3,自引:0,他引:3
通过原材料选取、配合比设计和热工计算等一些技术准备,制定大体积混凝土冬季施工温度控制技术方案,并在施工中观测热水温度和混凝土的浇注温度、内部温度及表面温度。实践证明,所采取的温控措施对消除大体积混凝土的收缩裂缝效果明显。 相似文献
7.
随着我国经济发展及桥梁施工技术进步,桥梁工程朝着高墩、大跨度方向发展,承台的体积越趋庞大,给大体积混凝土施工带来了挑战。温控防裂是大体积混凝土施工的技术难点和关键点。以江顺大桥Z3#墩承台大体积混凝土施工为例,介绍了大体积混凝土施工温控的关键技术,对类似工程的施工具有一定的借鉴意义。 相似文献
8.
9.
10.
大体积混凝土施工过程中,温度失控直接影响混凝土裂缝的产生。利用有限元软件MIDAS,对承台大体积混凝土的温度场进行数值计算,并与实际温测结果进行比较。结果表明,计算与实测混凝土核心最高温度基本吻合,曲线的走势也大致相同。 相似文献
11.
12.
13.
水盘高速公路北盘江特大桥为5×30+82.5+220+290+220+82.5+7×30 m预应力混凝土空腹(斜腿)式连续刚构,主跨290 m按常规高标号混凝土(C55)施工目前属世界第一.主墩承台为28 m×28 m×5m,属典型的大体积混凝土块体,其所处地理位置环境复杂,昼夜温差极大,在施工中,对大体积混凝土的温度... 相似文献
14.
针对实际工程项目,采用三维有限元软件MIDAS/Civil模拟分析桥梁承台大体积混凝土浇筑施工过程中温度及拉应力变化情况,据此制定合理可行的内部冷却管布置方案,设计并采用大体积混凝土智能控制系统实现大体积混凝土养护过程智能化。 相似文献
15.
通过对大体积混凝土产生裂缝的原因进行分析,结合禹门口黄河公路大桥主桥施工现场的实际情况和以往多个大体积混凝土项目的施工经验,提出了优化混凝土配合比初凝时间、对混凝土表面进行保温养护、控制混凝土浇筑温度等一系列措施。在第一个承台分层浇筑过程中,合理布置冷却水管,埋设测温元件,对整个施工过程进行全面监控,并整理分析测量数据,反馈施工过程中存在的问题,及时调整温控措施并运用到第二个承台施工中,有效控制了禹门口黄河公路大桥主桥大体积承台混凝土有害裂缝的产生。 相似文献
16.
17.
合理的温控措施和浇筑工艺是保证大体积混凝土施工质量的重要手段。文章详细介绍了荣(成)-乌(海)高速小沙湾黄河特大桥主塔承台大体积混凝土的温控设计、温控措施、温度监测,并对监测成果进行了分析。 相似文献
18.
以某斜拉桥塔座大体积混凝土施工为例,分析大体积混凝土产生裂缝的原因,制定本塔座温度控制的内容和具体措施,并以理论计算验证温度控制的效果。 相似文献
19.
斜拉桥下塔柱大体积混凝土温控研究 总被引:1,自引:0,他引:1
大体积混凝土由于其聚集的水化热高且混凝土散热困难,因此温度裂缝控制是大体积混凝土施工的关键。该文结合工程实例,依据温控标准,提出温度控制措施,通过Midas软件模拟大体积混凝土的温度场,分析混凝土浇筑、水管冷却及边界条件等因素对其温控的影响,并制定相应的温度监测方法以检验温控标准和措施效果。其数值分析与现场监测结果达到较好的吻合。 相似文献
20.
为探明海洋环境对跨海大桥大体积混凝土水化热的影响规律,以海南省某跨海斜拉桥为背景进行研究。对该桥承台进行冷却系统设计和温度场实测;采用有限元软件MIDAS FEA建立承台仿真分析模型,在温度场仿真结果与实测值吻合良好的基础上,进行混凝土配合比、入模温度、环境温度、冷却水流量和水温、拆模时间等参数分析。结果表明:采用复掺技术可降低绝热温升达6.07℃;入模温度和环境温度均降低10℃时,内表温差分别减小4.26℃和增大9.05℃;冷却水流速大于0.8m3/h时冷却效率反而降低;年平均风速作用下5d拆模时最大内表温差达24.29℃。建议海工大体积混凝土采用复掺技术;控制入模温度和环境温度;根据测试结果动态调整冷却水流量和温度;正常天气时拆模时间不少于7d。 相似文献