首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷酸镁水泥混凝土可应用于桥梁抢建工程中的受弯构件,为研究钢纤维磷酸镁水泥混凝土梁的受弯性能,对5片不同钢纤维掺量(0%、0.5%、1.0%、1.5%和2.0%)的磷酸镁水泥混凝土梁进行了四点弯曲加载试验,分析了钢纤维掺量对磷酸镁水泥混凝土梁破坏形态、裂缝分布、受弯承载力以及延性等受弯性能的影响。试验结果表明:试验梁的破坏模式均为典型的弯曲破坏;在同等荷载作用下,掺有钢纤维的试验梁裂缝数量更多,但裂缝宽度更小且分布更加密集,改善了梁体开裂状况;随着钢纤维掺量的增加,试验梁的开裂荷载、屈服荷载和峰值荷载以及延性系数均得到提高,其中延性系数的提高尤为显著。基于ABAQUS有限元分析,与试验结果进行对比,并以钢纤维掺量和纵筋配筋率为参数进行了有限元参数化分析,结果表明:纵筋配筋率增加可以显著提高磷酸镁水泥混凝土梁受弯承载力,但会降低梁的延性,而提高钢纤维掺量则能显著改善梁的延性。最后,通过探究钢纤维在混凝土中的作用机理,提出了钢纤维在载荷方向上贡献的抗拉强度,建立了钢纤维磷酸镁水泥混凝土梁的受弯承载力计算公式,且计算结果与试验结果吻合良好。  相似文献   

2.
钢纤维能明显提升超高性能混凝土(Ultra-high Performance Concrete, UHPC)的抗拉强度与韧性,对UHPC构件的扭转行为有显著影响。为深入研究钢纤维特性对UHPC矩形梁抗扭性能的影响规律,以钢纤维体积掺量、类型、尺寸以及混杂效应等为变化参数,完成了8根UHPC矩形梁(含1根未掺钢纤维的对比梁)的纯扭试验;获得了各试件的纯扭破坏形态、扭矩-扭率曲线、扭矩-应变曲线、裂缝形态等关键数据。结果表明:对比梁为脆性破坏,纤维增强UHPC梁的破坏则是有征兆的;纤维增强UHPC梁的开裂和极限扭矩均明显大于对比梁,最大提升幅度分别达79%和159%;增加钢纤维体积掺量能提高开裂和极限扭矩,且斜裂缝数量更多、宽度更小;掺端钩纤维试件的抗扭承载能力和延性均优于掺圆直纤维试件;钢纤维长径比越大,试件的裂缝分布越密集,极限扭率越大,延性越好;2根混掺纤维试件的开裂和极限扭矩均大于单掺试件,正混杂效应明显;钢纤维类型和尺寸均会影响试件的裂后承载能力,掺长径比65的圆直钢纤维在开裂后迅速达到极限状态,极限与开裂扭矩之比为1.07~1.18,长径比为100时对应的比值为1.46,而掺端钩纤维则为1.34,介于两者之间。最后,提出了UHPC矩形梁开裂和极限扭矩计算公式;并对30根UHPC矩形梁进行了验证,结果表明计算公式精度良好。  相似文献   

3.
超高性能混凝土(Ultra High Performance Concrete,UHPC)作为一种新型的水泥基复合材料,在力学性能上具有高抗压强度、高抗拉强度、高弹性模量、高耐久性且徐变特性良好的优点。通过ABAQUS有限元分析,主要研究了在普通钢筋UHPC-T梁方案下,钢筋直径(配筋率)、钢筋强度等级、UHPC抗拉强度和UHPC极限拉应变对UHPC-T梁抗弯性能的影响。根据参数分析结果,对于普通钢筋配筋的UHPC梁,钢筋直径(配筋率)和钢筋强度等级的改变对抗弯承载力的提高作用较为明显,钢筋强度等级的改变可以显著提高屈服荷载值,而UHPC抗拉强度的提高对于开裂荷载影响较大,UHPC极限拉应变主要影响梁体的延性。  相似文献   

4.
为研究掺钢纤维无配筋超高性能混凝土(UHPC)矩形梁的抗扭性能,分析钢纤维类型对梁体纯扭受力行为的影响,设计制作4根UHPC矩形梁[包括未掺钢纤维试件1根;掺短圆直、长圆直、端钩钢纤维试件各1根(钢纤维长分别为13,20,13 mm,直径均为0.2 mm,体积掺量均为2%)],并设计1套纯扭加载装置进行试件纯扭试验。基于试验结果,分析各试件在纯扭作用下的扭矩~扭率曲线、开裂和极限扭矩、扭矩~应变曲线、裂缝分布等,并推导UHPC矩形梁的抗扭承载力计算公式,将计算值与试验值进行对比验证。结果表明:掺入钢纤维使UHPC试件由脆性破坏变为延性破坏,且开裂和极限扭矩均有明显提升,最大提升幅度分别为45.6%和100.6%;当体积掺量不变时,钢纤维类型对无配筋UHPC梁开裂扭矩和扭率影响较小,但对极限扭矩和扭率以及裂缝分布有较大影响;掺端钩纤维试件和掺长圆直纤维试件的抗扭承载力和延性均优于掺短圆直纤维试件;掺钢纤维UHPC梁在纯扭作用下的主拉和主压应变显著高于未掺试件,表明钢纤维可以有效“桥联”UHPC基体;试件的抗扭承载力试验值和计算值比值的平均值为0.93,标准差为0.09,说明提出的抗扭承载...  相似文献   

5.
针对配筋超高性能混凝土(UHPC)构件的抗扭性能研究严重不足的状况,进行10个不同配筋率UHPC矩形梁的纯扭试验。研究参数主要包括钢纤维掺量、纵筋配筋率和箍筋配筋率。观察或测试试件的扭转破坏过程及形态,获得裂缝开展及分布情况、失效模式、扭矩-扭率曲线、扭矩-UHPC应变曲线、扭矩-钢筋应变曲线、开裂扭矩及极限扭矩等数据,分析不同参数对其扭转性能的影响规律及其主要机理。研究结果表明:扭矩不大于无筋UHPC试件极限扭矩时,配筋构件抗扭刚度小于无筋构件;配筋及无筋试件的纯扭破坏均表现为多条主裂缝贯通,且裂缝呈空间螺旋状分布;无配筋试件形成少量斜裂缝,极限扭率较小,破坏过程迅速;配筋试件形成细且密的斜裂缝、极限扭率较大、延性更好;根据实测的极限扭矩扭率增幅情况,以及纵、箍筋屈服情况,受扭的UHPC配筋试件可分为少筋Ⅰ类构件(含无筋构件)、少筋Ⅱ类构件、适筋构件、部分超筋构件、超筋构件;钢纤维改善了UHPC抗拉特征,使得主裂缝开裂角度(裂缝与试件轴线的夹角)增加;钢纤维掺量由2.5%增加到3.5%,试件开裂扭矩和极限扭矩分别提高了23.2%和20.9%。在试验的基础上,根据扭转试件即将开裂时实测的拉压应力状态以及二维应力状态下的强度准则,得到UHPC构件开裂扭矩系数值;最后,根据试验结果得到了UHPC极限扭矩计算公式的截面抗扭系数。  相似文献   

6.
为研究高强钢筋活性粉末混凝土(RPC)梁在弯矩作用下的受力特性和其抗弯性能的影响因素,设计制作20根高强钢筋RPC矩形梁进行抗弯承载力试验,分析梁的破坏形态、荷载~挠度曲线、裂缝的发展和分布,研究配筋率和钢筋强度对抗弯性能的影响规律。结果表明:RPC适筋梁的正截面破坏过程与普通混凝土梁相似,表现出良好的延性,少筋梁和无筋梁具有一定的延性;相同钢筋强度RPC梁的开裂弯矩和极限承载力随配筋率增加而增大;相同配筋率时,RPC梁的极限承载力随钢筋强度增加而增大,但钢筋强度对开裂弯矩影响不大;试验过程中,梁的截面应变符合平截面假定;根据简化理论计算的RPC梁极限弯矩值和试验值吻合良好。  相似文献   

7.
配筋超高性能混凝土(Ultra-high Performance Concrete, UHPC)梁在弯剪扭组合荷载作用(复合受扭)下的抗扭性能研究较为匮乏。为此,开展了8根配筋UHPC矩形梁的复合受扭试验,获得了各试件损伤破坏模式、扭矩-扭率曲线、扭矩-应变曲线及扭矩-裂缝宽度曲线,分析了配筋UHPC矩形梁复合受扭破坏机理,探讨了扭剪比、纵向配筋率对抗扭承载性能和延性的影响。试验结果表明:试件破坏形态为纯扭破坏和非纯扭(扭转、剪扭、弯扭)破坏;相比于纯扭试件,非纯扭试件表面未形成空间螺旋形裂缝,同时其正立面裂缝比背立面数量更多且更宽,非纯扭试件开裂扭矩降低46%~73%,抗扭承载力降低1%~38%,扭转延性系数提高38%~169%。随扭剪比从1增加到3,非纯扭试件抗扭承载力提高1%~21%,扭转延性系数提高24%~88%;随着纵向配筋率从0.78%增加到4.90%,试件抗扭承载力提高12%~27%,非纯扭试件扭转延性系数提高35%~88%,但纯扭试件扭转延性系数下降了31%。配筋UHPC复合受扭梁弯扭相关性符合“三折线”模型,基于弯扭“三折线”模型提出的复合受扭梁抗扭承载力公式计算值与...  相似文献   

8.
提出了一种利用预应力钢丝绳和超高性能混凝土(UHPC)复合抗弯加固损伤钢筋混凝土梁(RC梁)的新方法,制作了1根普通混凝土基准梁(CB)和2根相同的预应力钢丝绳-UHPC加固梁(SB1,SB2),通过四点弯曲试验,探究了加固梁的破坏模式、变形性能、抗裂性能、应变发展与界面滑移特点。试验结果表明加固梁的破坏模式为钢丝绳和UHPC断裂,普通钢筋屈服,之后顶部混凝土压溃的受弯破坏;加固层断裂失效后加固梁与基准梁的抗弯性能基本相同。该加固方法可有效提高构件的抗弯刚度和开裂荷载,延缓原梁裂缝和应变发展,从而使构件在正常使用阶段的受力性能得到了明显提升。  相似文献   

9.
为研究空心板桥新型粗骨料超高性能混凝土(UHPC)铰缝的抗剪性能,对14个铰缝试件进行了静力抗剪试验,试验参数包括铰缝混凝土材料类型、界面处理方式、抗剪钢筋构造形式、抗剪钢筋强度等级和配筋率。分析了试件的裂缝发展过程和分布规律、破坏模式以及各试验参数对铰缝抗剪性能的影响;同时,基于铰缝典型的荷载-位移曲线分析了铰缝的抗剪机理。试验结果表明:铰缝的裂缝宽度从下至上呈现逐渐减小的规律,由于传统配筋方式上部抗剪钢筋的位置靠近顶部,导致上部抗剪钢筋在铰缝抗剪承载力极限状态时尚未屈服,对抗剪承载力的贡献小。试件破坏模式分为2种:传统铰缝的界面剪切破坏;UHPC铰缝的预制混凝土块剪切破坏。UHPC材料、界面预留槽处理方式、抗剪钢筋新配筋方式以及提高抗剪钢筋的强度等级和配筋率,均能不同程度地提升铰缝的抗剪性能。与传统铰缝相比,新型粗骨料UHPC铰缝的开裂荷载、抗剪承载力和名义抗剪刚度提升幅度分别可达42.8%、185%和218.3%。当达到抗剪承载力极限状态时,UHPC铰缝主要依靠抗剪钢筋屈服提供的剪切摩擦抗力以及预制混凝土块剪断提供的剪切抗力来抵抗外荷载。提出了UHPC铰缝开裂荷载及抗剪承载力计算公式。计算结果表明:开裂荷载、抗剪承载力试验值与计算值比值的均值分别为1.47、1.19,变异系数分别为0.05、0.12,所提出的计算公式可以较精确和稳定地预测UHPC铰缝的开裂荷载及抗剪承载力。  相似文献   

10.
为明确超高性能混凝土(Ultra-high Performance Concrete,UHPC)双向板在局部荷载作用下的抗冲切性能,以UHPC强度、板厚、配筋率、局部加载面积和加载位置为试验参数,对9块四边简支UHPC双向板进行抗冲切破坏试验,分析UHPC双向板的冲切破坏机理和各试验参数对板抗冲切性能的影响规律。结果表明:试件均发生钢筋屈服后的冲切破坏,板底出现环形裂缝且板内形成冲切锥体;冲跨比小于7时,冲切破坏面倾角和名义抗冲切强度均随冲跨比增加而减小,而冲跨比大于7时,则其基本不变;UHPC强度等级从120 MPa提高到150 MPa时,板的抗冲切承载能力提高5.5%;当板厚由60 mm增加至80 mm和100 mm时,板的抗冲切承载能力分别提高69.7%和1.883倍;相较于1.31%配筋率的试件,2.57%配筋率的试件的抗冲切承载能力提高14.9%;与方形加载板边长为70 mm的试件相比,边长为90 mm试件的抗冲切承载能力提高9.8%;与中部加载试件相比,边部和角部加载试件的抗冲切承载能力分别提高15.3%和13.1%。为避免UHPC双向板发生钢筋网格内的冲切失效,板底受拉钢筋间距不应大于加载板边长与1.15倍有效板厚的和。基于试验结果和相关文献,评估了现有抗冲切承载力计算公式的适用性,并引入冲跨比考虑局部荷载偏置的影响,提出了适用范围更宽的UHPC板抗冲切承载能力计算公式。  相似文献   

11.
开展4根加固梁和4根对比梁的静载破坏试验,分析U形箍筋加固梁在固定剪跨比、不同箍筋锈蚀率情况下的受剪性能。结果表明,U形箍筋抗剪加固RC梁对承载力的提升效果较好,开裂荷载和极限荷载平均提高幅度分别为16%和27%左右;随锈蚀率的增大,梁内箍筋和加固箍筋参与抗剪和屈服的时间提前;加固梁的梁内箍筋应变发展速度均小于对比梁;U形箍筋加固可有效限制梁斜裂缝的发展和延伸,提高梁的最大挠度,优化梁的刚度和延性。  相似文献   

12.
对3根不同配筋形式(普通钢筋配筋方案、钢板配筋方案、预应力筋配筋方案)的UHPC梁进行了受弯性能试验,结果表明:①相同配筋率条件下,钢板配筋方案(TB-2)较普通钢筋配筋方案(TB-1)更有利于限制裂缝的扩展,但对初裂荷载影响不大;②预应力筋配筋方案梁(TB-3)普通钢筋配筋率低,梁体开裂过后,裂缝迅速扩展,达到极限荷载时的最大裂缝远大于钢板配筋方案(TB-2)和普通钢筋配筋方案(TB-1);③建立了考虑受拉区UHPC抗拉贡献的抗弯承载能力计算公式,计算值与试验值吻合良好,为超高性能混凝土结构设计提供参考。  相似文献   

13.
由于整体预制RC盖梁对起重和运输设备要求高,而分段预制盖梁的拼接缝容易发生渗水且在节段分界面上纵筋不能连续传力,因此提出一种在UHPC模壳内部现浇混凝土的半预制叠合盖梁。开展带剪力键和不带剪力键的2个UHPC模壳-RC叠合盖梁和1个现浇RC盖梁对比试件的静力试验,并通过有限元模型分析了结合面黏结程度对叠合盖梁受力性能和破坏模式的影响规律。研究结果表明:UHPC模壳-RC叠合盖梁的破坏模式与现浇RC盖梁一致,均为剪压破坏;不带剪力键的叠合盖梁开裂荷载和极限承载力分别比现浇RC盖梁提高了42.1%和13.8%,同时可以有效降低裂缝宽度的扩展,但叠合盖梁存在界面脱开,核心混凝土拱起和UHPC模壳竖向开裂等现象;剪力键可以增大交界面黏结程度,有效减小最大裂缝宽度和交界面裂缝宽度的扩展速度,其交界面开裂荷载和极限承载力比不带剪力键的叠合盖梁提高50.0%和12.1%;理想界面黏结状态下,UHPC模壳可以达到极限压应变,材料性能得到充分发挥,说明UHPC模壳可以完全参与整体受力,但极限承载力仅比带剪力键叠合盖梁提高8.8%。以上结果说明,带剪力键的UHPC模壳-RC叠合盖梁具有良好的截面黏结强度和整体受力性能,可以推荐实际工程使用。  相似文献   

14.
为提升混凝土与钢筋之间的黏结性能,充分发挥高强钢筋的强度特性,选用直径0.2 mm的镀铜微钢丝钢纤维制备一种纤维体积掺量高达6%,工作性和强度兼备的高体积率微钢丝钢纤维混凝土,研究其与高强钢筋的黏结性能。参考已有的钢筋-混凝土黏结性试验规程相关建议,设计了高强钢筋-混凝土中心拉拔试验,分别研究高强钢筋与高体积率微钢丝钢纤维混凝土和普通混凝土对比组的黏结破坏过程,获得其典型破坏模式、加载端荷载位移曲线和极限黏结强度,进而得到加载端荷载-位移关系模型,并采用数值模拟方法对试验结果进行验证。试验结果表明,高强钢筋-高体积率微钢丝钢纤维混凝土拉拔试件破坏模式由普通混凝土对比组的混凝土劈拉破坏转变为高强钢筋的受拉屈服破坏,黏结强度较普通混凝土对比组试件提高125.5%以上,充分发挥了高强钢筋的强度特性,黏结性能显著改善,数值分析与试验结果较吻合。  相似文献   

15.
针对超高性能混凝土(UHPC)直剪性能研究较为缺乏的现状,开展24个“Z”形UHPC整体浇筑试件和24个“Z”形UHPC平接缝试件(用高压水凿毛先浇界面)的直剪试验,以得到钢纤维特性以及浇筑方式对UHPC (直剪)初裂强度、峰值强度、破坏模式以及直剪承载力的影响;并基于试验结果及UHPC细观本构模型开展了UHPC直剪承载力的理论分析研究。结果表明:无纤维UHPC整体试件和钢纤维掺量未超过3.0%的平接缝试件直剪破坏模式均为脆性破坏,纤维掺量达到2.5%的整体试件具备剪切延性破坏的特征;纤维掺量达到2.5%的平接缝试件界面处新老UHPC结合紧密;整体界面和平接缝界面直剪的初裂强度与峰值强度均随纤维掺量增加而显著增加,且峰值强度随纤维掺量几乎呈线性变化;纤维形状与长径比对整体界面初裂强度和峰值强度的影响不大,对平接缝界面则长纤维优于短纤维,异形纤维优于平直形纤维;整体界面和平接缝界面直剪的峰裂比(峰值强度与初裂强度之比)为103.5%~166.7%,整体界面峰裂比均显著大于纤维掺量相同的平接缝界面,2种界面的峰裂比均随钢纤维掺量增加而增加。建立了平接缝界面与整体界面直剪峰值强度之比η(简称直剪强度比)与纤维特征参数λf之间的高精度拟合公式。此外,还分别提出了高精度的UHPC整体界面和平接缝界面的直剪承载力计算公式。  相似文献   

16.
为明确超高性能混凝土(Ultra-high Performance Concrete,UHPC)柱中配箍率和钢纤维掺量对抗震性能的影响,对不同配箍率(0%、0.25%和0.5%)与钢纤维体积掺量(0%、1%和2%)的5根超高性能混凝土足尺柱试件进行了抗震性能试验研究,分析了配箍率和钢纤维掺量对超高性能混凝土柱耗能能力、自复位能力、强度退化性能、刚度退化性能以及弯矩曲率关系的影响规律。基于对超高性能混凝土柱构件性能、箍筋应变以及等效侧向约束力的分析,提出钢纤维体积掺量与配箍率的等效计算公式。研究结果表明:①配箍率对正截面破坏超高性能混凝土柱的延性、耗能能力以及自复位能力均有影响,当配箍率从0%提高到0.5%时,柱试件的延性系数提高15%,耗能能力提高55%,自复位能力提高32%;②钢纤维体积掺量对超高性能混凝土柱破坏形态的影响显著,随着钢纤维体积掺量的增加,混凝土的压碎剥落现象得到明显改善,延缓了受压钢筋屈曲现象的发生,从而提高了柱的延性,当钢纤维体积掺量从0%提高到2%时,柱试件的延性系数提高45%,耗能能力提高142%,自复位能力提高42%;③对于正截面破坏的受压构件而言,采用钢纤维代替箍筋具有一定的可行性。对于所研究的超高性能混凝土柱而言,2%的钢纤维体积掺量可等效于0.51%的配箍率。  相似文献   

17.
赵远庆  石鑫  何雄君  王华逸 《公路》2024,(3):364-371
为了研究聚丙烯纤维混凝土梁的受弯开裂性能,确定混凝土梁抗裂的最佳聚丙烯纤维掺量,制作15根钢筋混凝土梁,并设计5种纤维掺量水平,对其进行受弯抗裂试验,分析不同掺量水平对梁试件裂缝扩展、应变和跨中荷载位移曲线等方面的影响。研究结果表明:聚丙烯纤维的桥接作用能够牵制混凝土的局部裂缝,增加试件的延性,延缓初裂缝出现的时间,并且提高试件的开裂应力和开裂能;但与纤维掺量水平并非正相关,体积掺量为0.2%时的提升效果最好,为试件受弯抗裂最佳掺量。  相似文献   

18.
为了解纤维掺量不同的超高性能混凝土(UHPC)试件单轴受压力学性能,考虑PVA纤维、钢纤维及其混杂纤维的掺量及水胶比,制作4组普通混凝土试件和11组UHPC试件进行单轴受压试验,分析各组试件单轴受压破坏形态、韧性等受力特性,并根据试验结果研究UHPC受压本构关系。结果表明:随着纤维掺量的增加,试件的破坏形态由脆性向塑性转变,UHPC试件开裂后韧性增加,相较未掺纤维的韧性指数I_(1.5)、I_(2.0)、I_(3.0)均提高为原来的1.6倍以上;相同纤维掺量下,钢纤维对UHPC的阻裂效果优于PVA纤维。经无量纲化处理的UHPC受压应力~应变曲线具有明显的非弹性段,纤维掺量较高时部分试件的曲线会出现应力台阶;所提出的UHPC开裂变形计算方法可避免常规作图法人为因素的影响,UHPC受压本构模型考虑了纤维种类及掺量,能较好地模拟各纤维掺量下的结构受力。  相似文献   

19.
传统的钢筋混凝土结构在车辆荷载、恶劣环境下可能发生早期开裂破坏。为研究超高性能纤维钢筋混凝土(UHPFRC)对现有混凝土结构的修复潜力。文中提出在钢筋混凝土结构受拉区的2种加固方案,分别为UHPFRC加固构造(UR结构)和UHPFRC+内嵌纵向钢筋加固构造(URR结构),同时与未加固的混凝土梁(RC)和模型梁试验结果进行对比分析;并进一步研究UHPFRC厚度与UHPFRC层配筋率等参数对极限承载力、刚度及开裂荷载的影响。结果表明,随着UHPFRC层厚度的增加,复合结构的抗裂强度和刚度显著提升1~2倍,但抗弯承载力改善不明显。当钢筋嵌入UHPFRC层时,抗裂强度和极限承载力均得到显著提升,延迟了结构的开裂。  相似文献   

20.
为了研究预制UHPC螺栓连接键齿接缝梁的抗弯性能,进行了3根UHPC螺栓连接键齿接缝梁(简称接缝梁)和1根UHPC整体梁的抗弯试验,探讨接缝两侧设置钢垫板及接缝表面涂抹环氧树脂胶等因素对UHPC接缝梁的开裂荷载、抗弯承载力、跨中挠度、连接钢板上、下缘应变、接缝相对纵向位移的影响。试验及分析结果表明:UHPC接缝梁存在有一种受弯破坏模式,该破坏模式表现为UHPC键齿受剪产生楔形裂缝而引起的接缝破坏,接缝表面涂抹环氧树脂胶对接缝梁的抗弯及变形性能影响小,接缝两侧设置钢垫板对UHPC接缝梁的开裂荷载影响小,但可提高接缝的抗弯承载力,减小接缝梁的跨中挠度和接缝的上、下缘相对纵向位移,且对连接钢板的受弯变形也有一定的改善作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号