首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
采用修正偏心压力法研究波形钢腹板连续组合箱梁桥的荷载横向分布规律。结合工程实例,利用修正偏心压力法计算某单箱三室波形钢腹板连续组合箱梁桥的荷载横向分布系数,利用空间有限元分析程序进行了数值模拟,并对其偏心荷载工况下的挠度进行了实测。将修正偏心压力法、有限元模拟方法得到的挠度值与实测挠度值进行对比。结果表明,修正偏心压力法将空间问题转化为平面问题,且充分考虑了波形钢腹板组合箱梁的抗扭作用。得到的荷载横向分布系数与有限元计算结果吻合较好。采用该方法计算波形钢腹板连续组合箱梁桥荷载横向分布是可行且偏于安全的。  相似文献   

2.
基于波形钢腹板组合箱梁的特点,在其承受均布荷载作用下,运用能量变分原理推导了波形钢腹板简支箱梁考虑箱梁剪力滞效应和波形钢腹板剪切效应下的挠度计算公式.结合室内模型试验梁的实测值和ANSYS三维有限元的计算值,对该公式的正确性进行了验证,同时分析了这2种影响因素对波形钢腹板简支箱梁挠度的影响程度.结果表明:该公式的计算结果与实测值及有限元计算值吻合良好;在承受均布荷载作用下,与初等梁理论计算的挠度相比较,剪力滞效应和波形钢腹板的剪切效应分别增大波形钢腹板简支箱梁挠度的1.82%和36.36%,因此在实际计算中必须考虑波形钢腹板剪切效应对挠度的影响,而可以忽略剪力滞对挠度的影响,研究结论可为今后波形钢腹板箱梁桥的设计计算提供参考.  相似文献   

3.
波形钢腹板组合箱梁剪力滞效应的理论与试验研究   总被引:2,自引:0,他引:2  
基于能量变分法原理推导了波形钢腹板组合箱梁在集中荷载和均布荷载作用下的剪力滞效应计算公式,讨论了波高区混凝土的合理计算宽度取值问题;制作了2根模型梁、并进行了在集中荷栽和均布荷载作用下的加载试验,通过实测箱梁翼板的纵向应力分布来研究这种组合结构在外荷载作用下的剪力滞效应的变化规律;在此基础上利用空间有限元分析程序进行了数值分析.结果表明:剪力滞系数的理论值、模型实测值以及空间有限元计算值吻合良好,波高区混凝土按1倍波高进行取值计算时结果偏于安全;集中荷载相对于均布荷载而言,其剪力滞系数较大;结果证明了本文公式可用于波形钢腹板组合箱梁的剪力滞效应计算.  相似文献   

4.
为简化并准确分析波形钢腹板组合箱梁剪力滞效应,基于波形钢腹板组合箱梁能量变分法微分方程,考虑波形钢腹板剪切变形及体外预应力作用,采用有限梁段法推导得到梁段单元的系数矩阵和广义外荷载向量计算公式,求解波形钢腹板组合箱梁任意点的弯曲应力。以某等截面波形钢腹板组合简支试验梁为算例,将跨中截面正应力有限梁段法计算值与试验值、变分法及有限元法计算值进行对比,该方法跨中正应力分布与其它方法结果均吻合较好,顶板有限梁段法正应力峰值与有限元计算值相差仅1.6%,验证了该方法准确度较高。采用该方法分析伊朗德黑兰BR-06L/R特大桥波形钢腹板组合连续箱梁桥在悬臂施工及成桥阶段的剪力滞效应,结果表明:悬臂施工阶段,随着悬臂长度增加固定端剪力滞效应逐渐减弱;成桥阶段,中支点和集中荷载加载点处剪力滞效应非常显著,均布荷载作用下边跨正弯矩区剪力滞系数较大,中支点处的峰值为1.13。  相似文献   

5.
由于单箱多室波形钢腹板PC组合箱梁截面剪力滞效应与混凝土箱梁截面剪力滞效应相比有很大差异,并且波形钢腹板几乎承担了全部剪力,波形钢腹板的剪切模量也需要进行修正。为研究单箱多室波形钢腹板PC组合箱梁的剪力滞效应,从波形钢腹板PC组合箱梁的受力特点出发,以满足剪力滞翘曲应力的轴向平衡条件,采用二次、三次抛物线定义了单箱双室、单箱三室波形钢腹板PC组合箱梁的纵向位移差函数,利用势能驻值原理的能量变分法建立了波形钢腹板PC组合箱梁考虑剪力滞、剪切变形效应的控制微分方程组,并推导出简支梁、悬臂梁、连续梁在集中荷载、均布荷载作用下的解析解。通过解析法和有限元法分别计算了简支梁和悬臂梁的剪力滞效应,并研究了集中荷载和满跨均布荷载作用下的单箱多室波形钢腹板PC组合箱梁的剪力滞分布规律,结果表明:采用二次抛物线剪力滞翘曲位移函数推导的剪力滞系数更为合理;单箱多室波形钢腹板PC组合箱梁在跨中集中荷载下,波形钢腹板与混凝土顶、底板交界处的剪力滞效应较为突出;随着波形钢腹板PC箱梁室数的增加,剪力滞系数明显减少,且解析解与有限元数值解一致,表明了解析解的正确性,并通过分析给出了相应的剪力滞系数,可以为单箱多室波形钢腹板箱梁的设计计算提供参考依据。  相似文献   

6.
简支波形钢腹板-混凝土组合箱梁扭转效应显著,文中根据组合箱梁受力特性,结合传统混凝土箱梁扭转分析理论,研究组合箱梁在集中偏心荷载作用下的扭转效应.结合相关文献的实验值,对偏心荷载下截面扭转翘曲正应力和扭转翘曲剪应力值进行修正,并通过ANSYS软件计算值进行对比分析.结果表明,在波形钢腹板-混凝土组合箱梁跨中作用偏心集中...  相似文献   

7.
波形钢腹板组合箱梁桥与钢筋混凝土箱梁桥一样,箱梁翼板也存在剪力滞效应.为研究大跨度变截面波形钢腹板组合连续箱梁的剪力滞效应,采用ANSYS的APDL参数化建模方法建立了典型的三跨式波形钢腹板组合连续箱梁桥的有限元模型,计算分析了集中(均布)荷载作用下变截面箱梁几何参数(腹板尺寸、宽高比、宽跨比、变截面)对于剪力滞系数的...  相似文献   

8.
刘清  李立峰 《城市道桥与防洪》2011,(7):97-98,110,0,16,11
为研究波形钢腹板PC组合箱梁在局部荷载作用下的横向内力问题,通过对建立与实桥缩尺比为1:5的有限元模型,利用空间有限元对其在局部荷载作用下的横向内力进行了数值仿真分析,并得到其横向内力的有效分布宽度,与规范计算得到的值相对比,表明采用现行公路桥梁设计规范中的有关规定来计算波形钢腹板组合箱梁的横向受力有效分布宽度是安全的...  相似文献   

9.
为探究不同腹板嵌入方式模拟对波形钢腹板组合箱梁建模精度和效率的影响,利用ANSYS建立三种连接方式下的有限元模型,分析其在荷载作用下的挠度、应力、剪力滞效应和自振频率,并将有限元模拟结果与现场模型试验实测数据对比,以找出最符合实际的连接方式。结果表明,MPC方式的建模效率明显高于共节点式与嵌入式,且能够满足精度要求,是最符合实际腹板嵌入连接的方式。该研究可为波形钢腹板组合箱梁有限元仿真提供参考。  相似文献   

10.
为客观准确地对单箱多室波形钢腹板PC组合箱梁的剪力滞效应进行评价,结合单箱多室混凝土箱梁的计算特点,定义了波形钢腹板箱梁的剪滞翘曲位移函数,通过能量变分法建立了单箱双室和单箱三室波形钢腹板箱梁考虑剪力滞效应的基本微分方程。分别采用有限元方法和解析方法分析计算了范例的剪力滞效应,研究了跨中集中荷载和满跨均布载荷作用下截面的剪力滞分布规律,探讨了跨宽比对剪力滞效应的影响。研究表明,该解析解与有限元数值解吻合较好,但在箱梁顶底板与波形钢腹板接合处、外伸悬臂板边缘处有一些差异,需要进行修正。研究给出了相关的剪力滞系数,可以为波形钢腹板箱梁设计时的剪力滞系数取值提供参考。  相似文献   

11.
与传统的混凝土腹板的箱梁相比,波形钢腹板箱梁具有特殊受力特性,钢腹板主要承受剪应力。对于单箱多室桥面较宽的波形钢腹板箱梁来说,各钢腹板的竖向剪应力分布比较复杂。通过空间有限元分析,发现不同横隔板的位置对钢腹板的竖向剪应力影响较大。应用有限元分析软件ANSYS建立单箱多室波形钢腹板箱梁参数化分析模型,计算得到最佳横隔板设计位置,并给出在单向车道荷载偏载作用下沿桥梁横向各钢腹板剪应力分布情况,为波形钢腹板箱梁的合理设计提供参考。  相似文献   

12.
波形钢腹板体外预应力组合箱梁的显著特点是用波形钢腹板取代了混凝土腹板,其受力性能与常规预应力混凝土箱梁有较大差别。为了研究剪切变形和日照温度效应对大跨波形钢腹板预应力组合箱梁桥线形控制影响,本文以桃花峪黄河大桥跨大堤桥为背景进行了分析,研究表明:(1)剪切变形对大跨波形钢腹板预应力组合箱梁挠度影响不可忽略,需要以能精确模拟此类结构构造特点的空间有限元分析计算为基础进行该类结构线形控制。(2)在日照温度挠度效应方面,波形钢腹板预应力组合箱梁的日照温度挠度效应趋势和常规PC箱梁相同,但是其温度挠度变化比同跨径常规PC箱梁小。  相似文献   

13.
波形钢腹板PC组合箱梁具有自重轻,抗剪强度高,预应力施加效率高等优点。但由于其截面扭转刚度低于常规箱梁,使得结构扭转效应明显。该文运用乌氏第二定理推导波形钢腹板箱梁在偏心荷载作用下约束扭转应力及刚性扭转角计算公式;采用初参数法求解波形钢腹板PC组合箱梁的刚性扭转角、翘曲正应力及扭转剪应力。结合相关文献的实测数据及有限元分析结果验证理论分析方法的准确性,并对波形钢腹板PC组合箱梁桥的扭转性能进行分析。由约束产生的翘曲正应力有限元分析结果为理论计算结果的97.14%,扭转剪应力有限元分析结果为理论计算结果的102.13%。  相似文献   

14.
为了了解波形钢腹板变截面连续体系梁桥钢腹板的弯曲剪应力及剪力传递效率,基于组合有限元思想,采用有限元软件建立大桥精细模型,首先对组合箱梁拟平截面假定进行验证,然后选取12个控制截面,分析自重、自重+预应力荷载作用下各控制截面的波形钢腹板剪应力及剪力传递效率。计算结果表明:弯曲作用下变截面波形钢腹板组合箱梁截面满足平截面假定,波形钢腹板中的剪应力沿板厚均匀分布,自重及预应力作用下变截面波形钢腹板组合截面的剪力传递效率为50%~80%,且变截面效应带来的梁高和底板厚变化会使波形钢腹板参数相同的梁段剪力分配比例有明显变化。  相似文献   

15.
为了分析计算波形钢腹板箱梁在竖向荷载作用下的弯曲挠度,考虑波形钢腹板和混凝土顶、底板在其自身平面内的全截面剪切变形,引入符合力学规律的波形钢腹板和混凝土顶、底板在其面内剪切变形的位移函数,利用能量变分原理,推导出波形钢腹板箱梁挠度计算的解析解。结合单箱单室和单箱双室波形钢腹板箱梁算例,与仅考虑波形钢腹板剪切变形的挠度计算方法和ANSYS有限元解进行了比较分析。结果表明:该解析解的计算结果比仅考虑波形钢腹板剪切变形的计算结果更加精确,与有限元分析结果吻合良好,误差在5%以内,满足挠度计算的精度需求,且跨径越小,全截面剪切变形效应对挠度的影响越明显;针对单箱单室波形钢腹板箱梁,全截面剪切变形效应对挠度的贡献最大为36. 12%,其中波形钢腹板的剪切变形对总挠度的贡献最大为34. 46%,剪力滞效应对总挠度的贡献最大为1. 66%;而对于单箱双室波形钢腹板箱梁,全截面剪切变形效应对挠度的贡献最大为40. 91%,其中波形钢腹板的剪切变形对总挠度的贡献最大为36. 03%,剪力滞效应对总挠度的贡献最大为4. 88%;在相同的工况下,波形钢腹板箱梁的箱室越多,全截面剪切变形效应对挠度的贡献越大,挠度贡献值的最大增幅为4. 79%,在不同的工况下,集中荷载作用下全截面的剪切变形效应较为明显。  相似文献   

16.
波形钢腹板预应力混凝土箱梁足尺模型试验研究   总被引:1,自引:0,他引:1  
根据国内首座波形钢腹板预应力混凝土组合箱梁公路桥———泼河大桥的箱梁构造尺寸,设计了足尺模型试验梁,对其力学性能进行了试验研究。测试了波形钢腹板及顶板的混凝土纵向应变分布、挠度以及腹板剪力、体外预应力增量等问题。研究结果表明:波形钢腹板预应力混凝土组合箱梁的混凝土顶板和底板主要承担弯矩,波形钢腹板则主要承担剪力,箱梁的计算挠度应考虑钢腹板剪切变形的影响,混凝土顶板存在明显的剪力滞效应,同时得出在荷载作用下体外预应力增量呈线性变化规律,且应力增量很小。  相似文献   

17.
波形钢腹板箱梁横隔板间距的研究   总被引:15,自引:0,他引:15  
与传统的混凝土腹板的箱梁相比,波形钢腹板箱梁在偏心荷载作用下畸变效应有所增强,因而需要在跨内设置横隔板来减小畸变翘曲正应力。通过空间有限元分析,验证了横隔板对减小偏载作用下箱梁的翘曲正应力的作用,并分别针对不同高跨比条件下横隔板间距进行了计算分析,回归出了相应的经验公式,而且考虑了钢腹板竖向倾斜角度的影响,为波形钢腹板箱梁的合理设计提供参考。  相似文献   

18.
为了给波形钢腹板组合箱梁的疲劳设计和施工提供参考,制作了试验模型梁,并对其进行疲劳荷载试验,得到了这种结构的典型疲劳破坏特征。结合有限元分析,利用已有的研究资料,比较了波形钢腹板组合箱梁与波形钢腹板钢梁应力状态的相似性。采用断裂力学分析方法,对比有限元分析和模型梁试验结果,研究了波形钢腹板组合箱梁疲劳寿命的计算模式,进而推导出这种结构的S-N曲线。研究结果表明:对于波形钢腹板组合箱梁的疲劳设计,在有限疲劳寿命设计与计算中建议偏安全地采用美国规范AASHTO 2007提供的设计参考中的C类标准。  相似文献   

19.
为研究变截面波形钢腹板组合箱梁(CBGCSWs)在偏心荷载作用下的畸变效应,忽略波形钢腹板的纵向抗弯刚度,通过建立其微段单元平面内、外力系平衡方程,推导了以畸变角为未知量的畸变微分方程,并采用基于共轭梁理论的纽玛克法进行求解,由此建立了偏心荷载作用下变截面CBGCSWs畸变正应力计算理论。以某大跨变截面CBGCSWs桥为工程背景,运用该理论获得了4种不同工况下组合箱梁角点处畸变正应力理论解,并采用空间有限元方法进行了验证,数值解与理论解吻合良好,表明推导的变截面CBGCSWs畸变计算理论正确且精度足够,可供工程参考。在此基础上,比较了变截面CBGCSWs与对应PC箱梁的抗畸变能力,并探讨了横隔板间距、高跨比、宽跨比及钢腹板形状等因素对变截面CBGCSWs畸变正应力的影响规律。结果表明:用波形钢腹板替代混凝土腹板会较大程度削弱箱梁的抗畸变能力,应当引起足够重视;横隔板间距及宽跨比等参数对畸变正应力影响较大,而高跨比及钢腹板形状等则影响很小。  相似文献   

20.
为研究波形钢腹板预应力组合箱梁的徐变性能,利用ANSYS/CivilFem软件建立波形钢腹板预应力组合箱梁和常规PC箱梁空间有限元模型,对二者在相同顶底板初始应力和相同预应力配置这2种情况下的徐变效应,包括结构长期变形、体内和体外预应力损失率进行对比分析.结果表明:徐变引起的波形钢腹板箱梁挠度增量大于混凝土腹板箱梁;徐变引起的波形钢腹板箱梁体外预应力损失率大于混凝土腹板箱梁;体内预应力损失率小于混凝土腹板箱梁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号