首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UHPC (超高性能混凝土)作为一种新型混凝土材料,具有抗拉压强度高、耐久性好、变形性能优异的特点。为克服UHPC生产工艺复杂、制作成本较高的缺点,提出一种UHPC主梁由工厂预制,NC (普通混凝土)桥面板现浇而成的新型组合桥梁。然而,UHPC-NC组合构件叠合面的力学行为是决定2种材料能否良好共同工作的关键因素。为了研究具有抗剪箍筋作为连接件的组合梁的界面抗滑移性能,对10组UHPC-NC叠合试件进行了推出试验,研究了抗剪箍筋的数量、结合面的粗糙程度、普通混凝土的强度等级、钢纤维的形态等因素对界面粘结强度的影响。结果表明配置一定量的抗剪箍筋、对界面进行凿毛处理、提高NC强度等级可以显著提高界面的抗剪极限承载力,而钢纤维的形态对承载力几乎没有影响。采用ABAQUS有限元软件对试验过程进行了分析,得到了一个典型试件的粘结滑移曲线及理论抗剪承载能力。实测结果与计算结果吻合较好,表明超高性能混凝土和普通混凝土叠合构件具有良好的协同工作性能。  相似文献   

2.
由于整体预制RC盖梁对起重和运输设备要求高,而分段预制盖梁的拼接缝容易发生渗水且在节段分界面上纵筋不能连续传力,因此提出一种在UHPC模壳内部现浇混凝土的半预制叠合盖梁。开展带剪力键和不带剪力键的2个UHPC模壳-RC叠合盖梁和1个现浇RC盖梁对比试件的静力试验,并通过有限元模型分析了结合面黏结程度对叠合盖梁受力性能和破坏模式的影响规律。研究结果表明:UHPC模壳-RC叠合盖梁的破坏模式与现浇RC盖梁一致,均为剪压破坏;不带剪力键的叠合盖梁开裂荷载和极限承载力分别比现浇RC盖梁提高了42.1%和13.8%,同时可以有效降低裂缝宽度的扩展,但叠合盖梁存在界面脱开,核心混凝土拱起和UHPC模壳竖向开裂等现象;剪力键可以增大交界面黏结程度,有效减小最大裂缝宽度和交界面裂缝宽度的扩展速度,其交界面开裂荷载和极限承载力比不带剪力键的叠合盖梁提高50.0%和12.1%;理想界面黏结状态下,UHPC模壳可以达到极限压应变,材料性能得到充分发挥,说明UHPC模壳可以完全参与整体受力,但极限承载力仅比带剪力键叠合盖梁提高8.8%。以上结果说明,带剪力键的UHPC模壳-RC叠合盖梁具有良好的截面黏结强度和整体受力性能,可以推荐实际工程使用。  相似文献   

3.
为解决现有钢桥面铺装因大面积现浇超高性能混凝土(UHPC)产生收缩开裂,需密集配筋,施工现场需要大量蒸养设备等问题,提出了一种采用预制-现浇UHPC板的钢桥面铺装。通过钢-预制UHPC板界面、钢-现浇UHPC板界面和预制-现浇UHPC界面局部模型试验,揭示了采用预制-现浇UHPC板的钢桥面铺装各关键界面黏结性能;通过节段足尺模型试验与有限元分析,明确了车辆荷载下采用预制-现浇UHPC板的钢桥面铺装的荷载效应。研究结果表明:钢-预制UHPC板界面受拉和受剪破坏均发生于粘胶层与预制UHPC板结合面,法向抗拉和切向抗剪承载力可保守地取5.2 MPa和8.7 MPa;栓钉间距在150~320 mm之间时,栓钉加密对钢-现浇UHPC板界面抗剪承载力影响较小,可根据中国规范进行现浇UHPC板中栓钉承载力的计算,抗剪刚度可保守的取110.0 kN·mm-1;界面凿毛处理和湿接缝采用蒸汽养护,可使预制-现浇UHPC接缝的抗剪强度分别提升23%和20%,预制-现浇UHPC接缝抗剪强度可保守地取2.4 MPa;在3倍车辆设计荷载作用下,UHPC板以及钢-UHPC板界面的应力均小于容许应力。提出的采用预制-现浇UHPC板的钢桥面铺装方案可行。  相似文献   

4.
提出了一种利用预应力钢丝绳和超高性能混凝土(UHPC)复合抗弯加固损伤钢筋混凝土梁(RC梁)的新方法,制作了1根普通混凝土基准梁(CB)和2根相同的预应力钢丝绳-UHPC加固梁(SB1,SB2),通过四点弯曲试验,探究了加固梁的破坏模式、变形性能、抗裂性能、应变发展与界面滑移特点。试验结果表明加固梁的破坏模式为钢丝绳和UHPC断裂,普通钢筋屈服,之后顶部混凝土压溃的受弯破坏;加固层断裂失效后加固梁与基准梁的抗弯性能基本相同。该加固方法可有效提高构件的抗弯刚度和开裂荷载,延缓原梁裂缝和应变发展,从而使构件在正常使用阶段的受力性能得到了明显提升。  相似文献   

5.
为明晰超高性能混凝土(UHPC)加固RC结构的界面剪切力学行为,批量开展键槽定量化处理UHPC-NC界面抗剪承载性能试验研究。设计制作8组包含不同深度(t)、宽度(w)和间距(d)的UHPC-NC组合构件,分析了界面剪切荷载-滑移曲线特征,剪切应变分布规律、破坏形态以及极限抗剪承载力。试验结果表明,键槽处理方式能显著增强UHPC-NC界面初始剪切刚度(刚度值高于250 kN·mm-1)并有效提高界面极限抗剪强度(1.46~3.98 MPa,其中大于3 MPa的试件占总数的57.1%)。不同键槽参数t,dw对UHPC-NC界面抗剪强度的影响权值逐渐递减,且正角度开槽对界面抗剪强度的提升幅度为13%~32%,普遍优于负角度组;当深度t较小且w/t≤2时,后浇UHPC键槽部分承受较大剪切荷载,此时UHPC-NC界面出现“混合剪”破坏模式,能够有效发挥UHPC的抗弯拉性能;相同条件下,当w/t≥4时,后浇UHPC键槽面积在界面处占比增大,致使裂缝移至NC侧发展,即由NC主要承担界面剪力。此外,增大键槽间距d可改善界面域的剪力分配,“密集开槽”方式虽能有效提高界面抗剪能力,但考虑到此方式对原结构的损伤较大且施工成本较高,应对开槽深度和间距进行合理优化。提出基于断裂面法的UHPC-NC界面抗剪承载力计算公式,计算误差均在17%以内,计算结果表明,提出的公式可较好地评价定量化键槽处理的UHPC-NC界面抗剪性能。  相似文献   

6.
为了研究UHPC永久模板RC无腹筋组合梁的抗剪性能,以UHPC永久模板的厚度和界面条件为试验参数,分别开展了UHPC材料力学性能与UHPC永久模板RC无腹筋组合梁四点加载试验。由于组合梁的抗剪性能与UHPC的基本力学性能密切相关,因此首先对UHPC的抗拉与抗压性能进行了试验研究。UHPC的力学性能试验结果表明,UHPC在单轴单调荷载作用下具有一定程度的应变硬化特征,其拉伸极限强度为4.87 MPa,极限拉应变为0.6%。在材料试验结果的基础上,通过考虑UHPC永久模板厚度与界面方式这2种试验参数,分别设计了1根RC参照梁,1根UHPC参照梁,以及2种UHPC/RC界面类型(光滑与均布剪力键)、3种永久模板厚度(15,20,25 mm)、共计6根U形UHPC永久模板RC无腹筋组合梁。在对这8根梁分别进行四点加载破坏试验的基础上,分析了UHPC永久模板不同厚度与界面类型对组合梁抗剪承载力的影响。结果表明:组合梁的抗剪承载力及其变形能力较相同尺寸及配筋的RC无腹筋梁至少提高了103.7%和117.7%;且无论何种界面类型下,抗剪承载力随着UHPC永久模板厚度的增加而增加;界面为均布剪力键的UHPC永久模板较光滑界面能提供更高的抗剪承载力与变形能力。最终,基于修正桁架模型理论,分析了UHPC永久模板与RC无腹筋梁的抗剪承载力及其抗剪构成,提出了UHPC永久模板RC无腹筋组合梁的抗剪承载力计算公式,且公式计算值与试验值吻合较好。  相似文献   

7.
相比现浇混凝土桥面板,全预制混凝土桥面板有诸多优势,能够提高桥梁工程质量、加快桥梁施工速度和降低成本。预制超高性能混凝土(Ultra-high Performance Concrete,UHPC)梁和预制UHPC桥面板通过槽口连接形成组合梁是一种新的结构形式,这种槽口式连接的界面抗剪性能会影响全梁整体承载力。通过16个推出试件,研究不同界面抗剪钢筋配筋率、预制梁混凝土类型和预制桥面板混凝土类型、槽口填充混凝土类型对界面抗剪承载力的影响,在试验过程中观测裂缝的发展和破坏模式,记录竖向滑移、水平滑移和试件破坏模式、钢筋应变、极限荷载Vu和残余荷载Vr。试验结果表明:界面抗剪钢筋配筋率对Vu和Vr起主要作用,配筋率为3.7%的界面极限荷载分别是配筋率为2.8%和2.0%的1.06倍、1.20倍;不同的槽内填充混凝土和预制梁混凝土二者共同影响Vu和Vr;预制桥面板混凝土类型对抗剪性能影响不大;钢筋的销栓作用主要受到钢筋直径和混凝土强度等级的影响;通过与AASHTO LRFD 2015和ACI 318规范对比发现,2个规范对UHPC组合梁槽口式连接界面抗剪承载力估计保守;提出的预制UHPC组合梁槽口式连接界面抗剪计算公式计算值与试验值吻合较好。  相似文献   

8.
提出钢板-混凝土组合结构加固盾构隧道衬砌结构的加固方法,该方法采用钢板作为加固材料,钢板与原衬砌结构的界面黏结采用栓钉、植筋、化学锚栓和钢纤维混凝土组合而成的物理界面黏结。其中,焊接于钢板表面的栓钉作为钢板与钢纤维混凝土之间界面的抗剪连接件,植入原混凝土衬砌内表面的植筋作为原混凝土与钢纤维混凝土之间界面的抗剪连接件,化学锚栓提供钢板与原混凝土之间的径向抗剥离力,而采用钢纤维混凝土作为钢板与原混凝土衬砌之间的填充材料,其具有良好的抗裂性能与耐久性。这种界面黏结形式相比传统盾构隧道加固方法中由环氧树脂形成的化学界面黏结,提高了界面的强度、延性以及耐火性,改变了传统盾构隧道加固方法中,结构破坏源自局部界面黏结脆性破坏的破坏模式。以通缝拼装盾构隧道为加固对象,对加固试件进行模拟上部堆载作用下考虑二次受力的整环足尺静力加载试验,分析结构整体的受力过程、破坏模式和极限承载力等,探究钢板-混凝土组合结构加固法对于提高结构受力性能的作用,并将试验结果与内张钢圈加固法进行比较。研究表明:采用钢板-混凝土组合结构加固法加固盾构隧道,保证了界面黏结的有效性,极限承载力状态下,界面黏结良好,使得加固材料与原混凝土衬砌结构能够共同工作,提高了各类材料(钢板、螺栓等)的利用率,结构整体破坏模式具有良好的弹塑性;相比于内张钢圈加固法,钢板-混凝土组合结构加固法的钢材用量减少了29.4%,而结构极限承载力提高了31.1%,结构延性增加501%。  相似文献   

9.
基于前期对4组8个"Z形"混凝土连接构件进行剪切试验的结果,针对新老混凝土连接构件在剪切作用下的力学响应开展数值模拟,并详细分析了混凝土连接界面上的应力分布和传递情况。结果表明:通过植筋加固可以提高新老混凝土连接强度,同时还能减小界面间的应力差异,改善界面间的应力传递效果;对于方形和三角形植筋排布形式,其抗剪强度较为接近,但方形排布中各筋材上的应力分配相对更为均匀。  相似文献   

10.
为研究空心板桥新型粗骨料超高性能混凝土(UHPC)铰缝的抗剪性能,对14个铰缝试件进行了静力抗剪试验,试验参数包括铰缝混凝土材料类型、界面处理方式、抗剪钢筋构造形式、抗剪钢筋强度等级和配筋率。分析了试件的裂缝发展过程和分布规律、破坏模式以及各试验参数对铰缝抗剪性能的影响;同时,基于铰缝典型的荷载-位移曲线分析了铰缝的抗剪机理。试验结果表明:铰缝的裂缝宽度从下至上呈现逐渐减小的规律,由于传统配筋方式上部抗剪钢筋的位置靠近顶部,导致上部抗剪钢筋在铰缝抗剪承载力极限状态时尚未屈服,对抗剪承载力的贡献小。试件破坏模式分为2种:传统铰缝的界面剪切破坏;UHPC铰缝的预制混凝土块剪切破坏。UHPC材料、界面预留槽处理方式、抗剪钢筋新配筋方式以及提高抗剪钢筋的强度等级和配筋率,均能不同程度地提升铰缝的抗剪性能。与传统铰缝相比,新型粗骨料UHPC铰缝的开裂荷载、抗剪承载力和名义抗剪刚度提升幅度分别可达42.8%、185%和218.3%。当达到抗剪承载力极限状态时,UHPC铰缝主要依靠抗剪钢筋屈服提供的剪切摩擦抗力以及预制混凝土块剪断提供的剪切抗力来抵抗外荷载。提出了UHPC铰缝开裂荷载及抗剪承载力计算公式。计算结果表明:开裂荷载、抗剪承载力试验值与计算值比值的均值分别为1.47、1.19,变异系数分别为0.05、0.12,所提出的计算公式可以较精确和稳定地预测UHPC铰缝的开裂荷载及抗剪承载力。  相似文献   

11.
预制小箱梁采用整体抽拉式钢内模形成的近支座处接缝处于剪力最不利位置,界面上纵筋配筋率低、无预应力钢束穿过、锚固端在此形成刚性的剪切键。为揭示此种接缝构造的抗剪承载机制,设计制作9组18个Z形直剪试件进行静载试验,通过分析各试件的破坏形态、荷载-位移曲线及抗剪承载力,研究新老混凝土结合面单独加入界面钢筋、刚性剪切键以及将界面钢筋和刚性剪切键组合在一起(简称为组合试件)对结合面剪切性能的影响。研究结果表明:界面钢筋能有效提高结合面的抗剪承载力,界面钢筋试件的抗剪承载力为基本试件的1.74~2.67倍,构件抗剪承载力与界面配筋率有较好的线性关系;界面钢筋的承载机理符合摩擦抗剪理论,试件沿平行结合面约40°方向错动;刚性剪切键试件的荷载-位移曲线经历了先下降后上升的过程,刚性剪切键在结合面处起销栓作用,破坏模式为销栓抗剪引起的混凝土破坏;组合试件的抗剪承载力为基本试件的3.23~3.48倍,其中界面钢筋提供的抗剪能力占构件平均抗剪承载力的48.6%~52.2%,刚性剪切键提供的抗剪能力占构件平均抗剪承载力的20.2%~24.6%;将刚性剪切键受剪导致混凝土破坏的抗剪承载力表达为基材混凝土强度、...  相似文献   

12.
针对超高性能混凝土(UHPC)直剪性能研究较为缺乏的现状,开展24个“Z”形UHPC整体浇筑试件和24个“Z”形UHPC平接缝试件(用高压水凿毛先浇界面)的直剪试验,以得到钢纤维特性以及浇筑方式对UHPC (直剪)初裂强度、峰值强度、破坏模式以及直剪承载力的影响;并基于试验结果及UHPC细观本构模型开展了UHPC直剪承载力的理论分析研究。结果表明:无纤维UHPC整体试件和钢纤维掺量未超过3.0%的平接缝试件直剪破坏模式均为脆性破坏,纤维掺量达到2.5%的整体试件具备剪切延性破坏的特征;纤维掺量达到2.5%的平接缝试件界面处新老UHPC结合紧密;整体界面和平接缝界面直剪的初裂强度与峰值强度均随纤维掺量增加而显著增加,且峰值强度随纤维掺量几乎呈线性变化;纤维形状与长径比对整体界面初裂强度和峰值强度的影响不大,对平接缝界面则长纤维优于短纤维,异形纤维优于平直形纤维;整体界面和平接缝界面直剪的峰裂比(峰值强度与初裂强度之比)为103.5%~166.7%,整体界面峰裂比均显著大于纤维掺量相同的平接缝界面,2种界面的峰裂比均随钢纤维掺量增加而增加。建立了平接缝界面与整体界面直剪峰值强度之比η(简称直剪强度比)与纤维特征参数λf之间的高精度拟合公式。此外,还分别提出了高精度的UHPC整体界面和平接缝界面的直剪承载力计算公式。  相似文献   

13.
高强钢绞线网加固RC梁抗剪剥离承载力计算   总被引:1,自引:0,他引:1  
为研究高强钢绞线网加固的RC梁抗剪剥离承载力,对9根抗剪加固梁进行试验测试,并进行数值分析,研究了加固方式、原梁配箍率、混凝土强度、剪跨比、钢绞线用量、二次受力等因素对剥离破坏承载力的影响,并建立了抗剪加固剥离承载力计算公式.研究结果表明:持载加固构件的剥离承载力不一定低于完整加固构件,但持载程度增加,剥离承载力降低;随混凝土强度和原梁配箍率提高,剥离承载力提高,但提高幅度有限;不同加固方式的加固构件,其剥离承载力均随钢绞线直径的增大而提高,且提高幅度逐渐降低;随剪跨比增大,剥离承载力降低;所建抗剪加固剥离承载力公式计算值与试验值之比的平均值为1.006,计算结果与试验结果符合良好,公式可用于快速评估抗剪加固梁剥离承载力.  相似文献   

14.
为探究钢-UHPC组合结构与普通钢-混组合结构中PBL剪力键力学性能的差异性,通过推出试验和有限元分析相结合的方法对其展开详细研究。首先,对9个UHPC试件和9个普通混凝土试件进行推出试验,根据2种混凝土试件中PBL剪力键的破坏形态、荷载-滑移曲线及应变分布规律揭示其失效机制及力学性能的差异,分析贯穿钢筋直径和钢板开孔数对PBL剪力键力学性能的影响;然后,采用试验结果验证的有限元模型开展参数分析,详细探讨UHPC强度、钢板开孔孔径、贯穿钢筋屈服强度和钢板厚度对PBL剪力键极限抗剪承载力的影响;最后,基于试验和有限元分析结果,提出考虑钢纤维的PBL剪力键极限抗剪承载力计算公式。结果表明:受钢纤维的影响,UHPC的裂缝发展受到限制,且较普通混凝土裂缝数量少、宽度小;UHPC试件中贯穿钢筋发生明显屈服,以剪切破坏为主;单孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径,而受混凝土强度影响较小;多孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径和混凝土强度;与普通混凝土试件相比,UHPC试件的抗剪刚度提升了2~3倍,双孔剪力键极限抗剪承载力约提高41%,三孔约提高56%;钢板开孔孔径、...  相似文献   

15.
为研究新旧混凝土结合面抗剪性能的尺寸效应,以结合面不同处理方式(凿毛和凿毛+植筋)和结合面尺寸(高度分别为100、200、330、440 mm,宽度均为200 mm)为试验参数,对2组共16个Z字形新旧混凝土结合试件进行了抗剪试验。结果表明:凿毛试件和植筋试件结合面的抗剪性能均表现出明显的尺寸效应;凿毛试件的临界极限强度和弹性抗剪刚度分别为结合面高度100 mm试件的51%和32%;植筋试件的临界开裂强度、极限强度和弹性抗剪刚度分别为结合面高度100 mm试件的65%、76%和41%。结合面高度大于1 000 mm后,描述凿毛和植筋2类试件结合面抗剪性能特征参数的尺寸效应均趋于稳定;基于试验和分析结果,建立了凿毛和植筋处理时结合面的黏结-滑移本构模型,提出了表征结合面抗剪性能各特征参数尺寸效应律的计算式,可供工程结构设计和分析时参考。  相似文献   

16.
为指导桥梁墩柱加固设计,研究不同超高性能混凝土(UHPC)加固措施对钢筋混凝土(RC)墩柱轴压性能的影响,以加固方式(全高加固、非全高加固)、加固层材料(素UHPC、UHPC+钢筋网、UHPC+内FRP网格、UHPC+外FRP布)为参数,设计15根矩形RC墩柱试件(1个未加固试件、7个全高加固试件和7个非全高加固试件)进行轴压试验,分析其破坏模式和损伤机理,以及RC试件在轴压荷载作用下的极限承载力、刚度及延性等。结果表明:与未加固试件相比,全高加固试件、非全高加固试件的极限承载力提高率分别为142%~183%、28%~57%,但全高加固试件表现为脆性破坏,而非全高加固试件表现为延性破坏,宜根据工程实际需要采用合理的加固方式;采用不同加固层材料的加固效果为素UHPC、UHPC+内FRP网格、UHPC+外FRP布、UHPC+钢筋网依次递增,宜采用UHPC+钢筋网作为加固层材料。  相似文献   

17.
基于超高性能混凝土(UHPC)的优异性能及其在混凝土结构抗弯加固中的应用成果,提出了采用配筋UHPC加固受损混凝土斜拉桥主梁的方法,由此开展了UHPC加固受损严重主梁的混凝土斜拉桥节段模型试验研究,以探究主梁加固后斜拉桥体系的受力性能。试验结果表明:UHPC加固混凝土斜拉桥主梁施工方式整体协同工作性能良好,UHPC层与原混凝土间未发生脱黏破坏;UHPC加固后,主梁开裂荷载较原未损伤主梁提升了79.9%,且UHPC层裂缝呈现数量多、间隙小及宽度细的特征,并可有效抑制原主梁裂缝发展,说明受拉UHPC层显著提高了加固后主梁的抗裂性能;不同主梁裂缝宽度工况荷载作用下,斜拉桥体系变形恢复较好,残余变形很小,且当主梁出现严重损伤时,该体系仍具有很好的受力性能;UHPC加固后,主梁的抗弯强度有一定程度提高,但不控制斜拉桥体系的极限承载力,主梁破坏时斜拉索应力为其极限强度的70.2%,斜拉索仍然具有一定承载力富余;UHPC加固后,主梁严重受损的斜拉桥体系刚度得到有效提升,主梁开裂前体系刚度较未损伤原主梁及灌浆加固后主梁分别提升了11.3%和29.5%;采用UHPC对混凝土斜拉桥主梁进行抗弯加固具有较大...  相似文献   

18.
胡坤  高光友  周翔  余坤 《公路》2024,(1):335-342
为了探究预制UHPC环氧接缝剪切试验的受剪历程与破坏机理,采用ABAQUS建立预制UHPC环氧接缝剪切试件的精细化有限元模型。结合已经开展的试验研究,验证有限元模型的准确性,根据有限元模型分析预制UHPC环氧接缝的UHPC基体、黏结界面、环氧黏结剂的受剪历程和破坏机理。分析结果表明:预制UHPC环氧接缝剪切试验中,环氧黏结剂能够提供部分抗剪承载能力,因此在有限元分析中不可简化为零厚度内聚力单元分析;含阴-阳健齿的界面较于光滑界面抗剪承载力更高,在无约束情况下,健齿界面的极限抗剪强度是光滑界面的1.22倍,约束力作用下是1.19倍,因此更推荐健齿界面作为实际应用;被动约束的光滑、健齿试件的极限承载力分别比无约束试件高11.92%、17.77%;所有试件的破坏形态均主要为UHPC界面黏结处破坏,环氧黏结剂脱黏后仅发生微量损伤,可忽略不计。  相似文献   

19.
为了解竖向接缝对预应力混凝土箱梁桥抗剪性能的不利影响及改进措施,以七里坪湘江大桥预应力混凝土梁为原型,设计制作4片预应力混凝土模型梁进行跨中单点加载试验,分析各模型梁在试验过程中的裂缝发展情况、破坏形态和抗剪承载力,研究交界面粗糙度和普通钢筋配筋率对抗剪性能的影响。结果表明:各模型梁的裂缝发展过程基本相似,破坏形态均为弯剪破坏;带竖向接缝梁的抗裂性能比整体浇筑梁差,但各梁的抗剪承载力相差不大;带竖向接缝梁的刚度低于整体浇筑梁的刚度;增加接缝处混凝土交界面粗糙度和普通钢筋配筋率可以提高带竖向接缝梁的抗裂性能和刚度。  相似文献   

20.
北方地区冬季为行车安全常使用除冰盐,但钢筋混凝土防撞护栏因此容易遭受除冰盐侵蚀,降低防撞等级,容易引起重大交通事故,为此提高防撞护栏的耐久性至关重要。为此计划使用高耐久UHPC制作3cm厚永久性模板加在防撞护栏靠近行车道一侧,将防撞护栏耐久性指标提高2个数量级,同时提高其抗折、抗冲击性能,改善防撞护栏表观裂缝、气泡等。本研究首先在实验室对2种UHPC以及普通混凝土性能(抗压、抗折、氯离子扩散系数、收缩)进行对比试验,分析结果表明:标养条件下,28d抗压强度UHPC是普通混凝土的252%,28d抗折强度是普通混凝土的363%;氯离子扩散系数(RCM法)试验数据表明UHPC比普通混凝土的氯离子扩散系数低2个数量级; UHPC早期自收缩较大,后期干燥收缩小。然后,进行制作3cm厚UHPC永久模板(每块约1. 3m2)试验,解决了浇注过程中的气泡问题和表面色泽问题,确定水平浇注及"不锈钢模板+专用脱模剂"的预制方案。最后将UHPC永久模板与普通混凝土浇注连接,制作带有UHPC永久模板的混凝土防撞护栏,验证了安装施工方案与表面保护方案可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号