首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周俊  黄齐龙  白占时  雷力  夏敏程 《公路》2021,(1):122-129
武穴长江公路大桥15号墩承台为哑铃形承台,承台尺寸58.8m×28.8m×7m,浇筑方量9 560.2m3,封底混凝土厚5m,承台下设38根直径3m、桩长84m的钻孔灌注桩。选取适宜的混凝土材料参数及配比,采用MIDAS/FEA有限元分析软件辅助开展温控计算,分别对无管冷分块不分层、有管冷分块不分层、无管冷分块分层、有管冷分块分层4种情况开展计算,分析最高温、最大内表温差、温度应力等开裂风险影响参数的变化。同时,介绍了大体积异形承台预留后浇带分层分区浇筑技术、大体积承台后浇带模板整体式支撑技术、大体积承台后浇带温控技术等施工关键技术,为大体积现浇混凝土施工提供整体保障。  相似文献   

2.
廖菲 《世界桥梁》2012,(2):51-54,68
郑州黄河公铁两用桥主桥第一联为(121+5×168+121)m单索面连续钢桁结合梁斜拉桥,第二联为(121+3×120+121)m连续钢桁结合梁桥。该桥承台为大体积混凝土结构,为避免大体积混凝土出现裂纹,以主桥6号墩承台为研究对象,分析裂纹产生的主要原因,提出施工中控制裂纹产生的相应措施:首先通过试验选择混凝土的最优配合比;通过对承台有限元模型进行热工计算分析,得出合理的冷却水管布设方案及温度测点布设方式;严格控制混凝土浇筑时的分层厚度;采用"外部保温、内部降温"的冬季养护原则进行养护,并实时测量各测点温度。结果表明:该承台养护完成后,表面未出现任何裂纹,实现了大体积混凝土裂纹的有效控制。  相似文献   

3.
罗超云  李志生  周立 《公路》2012,(7):101-106
嘉绍大桥处于海洋环境,承台为深埋式,对混凝土耐久性要求高。主桥单个承台C30混凝土方量近8 000m3。通过对承台大体积混凝土配合比优化、原材料控制、浇筑过程控制及混凝土养护等方面进行详细分析和总结,并通过实时的温度监测数据分析,达到了海洋环境下高性能超大体积混凝土在取消冷却水管的条件下保证温控质量的目标。  相似文献   

4.
正2016年5月2日上午,青山长江大桥19号墩锁口钢管桩围堰封底施工正式启动(见图1),标志着该桥桥墩即将进入承台及塔座施工阶段。此次封底施工浇筑面积大,且水位较深,为保证质量,围堰封底分3个舱逐一进行,整个围堰封底浇筑混凝土总方量约19 000m~3,共需布置80根水封导管。  相似文献   

5.
《公路》2017,(7)
嘉绍大桥主航道桥为六塔独柱四索面分幅钢箱梁斜拉桥,主墩承台为圆柱形深埋式承台,直径39.0~40.6m,单个承台混凝土方量约8 000m~3,承台施工难点大、技术复杂。在嘉绍大桥Ⅳ标承台施工实践的基础上,介绍强涌潮水域埋置式承台双壁钢围堰的沉放工艺、水下封底混凝土浇筑工艺、承台大体积混凝土施工及温控措施。  相似文献   

6.
杭州湾跨海大桥北航道桥斜拉桥承台混凝土温度裂缝控制   总被引:3,自引:1,他引:3  
斜拉桥承台一般均为大体积混凝土,因水泥水化热的作用,承台内外温差过大,易使混凝土出现早期温度裂缝。杭州湾跨海大桥主跨承台混凝土浇筑分层均较厚,为3~4.5 m,在承台施工中采取了行之有效的温控措施,有效地控制了温度裂缝,确保了承台混凝土的耐久性。  相似文献   

7.
东沙特大桥承台砼浇筑方量为3092m^2,属于大体积砼,采用钢板桩围堰施工。文中介绍了该桥大体积承台施工技术及砼水化热的控制措施;通过现场温度监测,承台大体积砼的温度低于设计温度,避免了温度裂缝的出现。  相似文献   

8.
2016年5月2日上午,青山长江大桥19号墩锁口钢管桩围堰封底施工正式启动(见图1),标志着该桥桥墩即将进入承台及塔座施工阶段。此次封底施工浇筑面积大,且水位较深,为保证质量,围堰封底分3个舱逐一进行,整个围堰封底浇筑混凝土总方量约19 000m~3,共需布置80根水封导管。  相似文献   

9.
平塘特大桥为(249.5+2×550+249.5)m三塔双索面叠合梁斜拉桥,中塔承台于冬季施工,环境温度较低且天气变化剧烈、冷击效应明显。为避免在施工期间出现危害性裂缝,对承台大体积混凝土进行了温度控制。中塔承台分3次浇筑,施工过程中,采用了合理的混凝土配合比;对入模温度进行严格控制;在混凝土外部搭设保温棚,采用蒸汽养生等保温措施;内部设置了冷却水系统进行降温;表面、底面配制了防裂钢筋网。采用有限元软件MIDAS计算承台混凝土温度场和应力场,并在承台内部布置温度测点,对混凝土温度进行全程监测。结果表明:实测温度场的变化趋势与计算结果吻合较好,主要温度场和应力场指标均符合规范要求,大体积混凝土表面在整个浇筑养护期间均未出现明显有害裂缝。  相似文献   

10.
杨勇  彭昆 《公路与汽运》2020,(1):102-105
珠海市洪鹤大桥3#主墩承台平面尺寸为43 m×17 m,高6 m,承台砼浇筑量为4386 m^3,在30℃左右的高温季节进行施工。为确保承台大体积砼的施工质量,避免大体积砼结构产生温度裂缝,对承台大体积砼温度进行监测,发现承台第一层砼的施工温控指标超过规范建议值;针对其产生原因进行温控措施调整,并将调整后的温控措施应用于承台第二层砼施工,达到了较好的温控效果。  相似文献   

11.
五河口斜拉桥特大型承台施工技术   总被引:2,自引:0,他引:2  
丁如珍 《桥梁建设》2005,(1):52-54,76
五河口斜拉桥为双塔双索面预应力混凝土结构,其主墩承台采用49.5 m×33.1 m×6 m的矩形钢筋混凝土结构,体积为9 831 m3,重点介绍特大型承台基坑开挖、混凝土浇筑、大体积混凝土温控方法及措施,供同类型工程借鉴参考.  相似文献   

12.
沪通长江大桥天生港专用航道桥为(140+336+140)m的三跨连续刚性梁柔性拱桥,该桥3号主墩采用36根2.5m钻孔桩基础、深埋式矩形承台,承台尺寸为55m×25m×6.5m。承台采用双壁钢围堰(尺寸为58.1m×28.1m,高20.6m)施工,钢围堰作为施工期间的挡水结构及承台混凝土浇筑的模板。采用ANSYS软件建立钢围堰结构有限元模型,通过封底混凝土应力及封底混凝土与钢护筒的握裹力计算,确定采用厚度为3.4m的C25混凝土封底。3号主墩钢围堰吸泥下沉至顶面高程+5.2m后,采用中心集料斗与罐车自卸封底相结合、多导管布置、从上游往下游推进的方式进行封底混凝土施工。封底混凝土完成后,未发现漏水,封底施工取得圆满成功。根据现场施工情况,针对封底混凝土质量和导管布置方案提出了优化建议。  相似文献   

13.
《中外公路》2021,41(2):233-236
湖北石首长江公路大桥为主跨达820 m的超大跨斜拉桥,南塔承台在7、8月份施工。因此该桥主墩承台的超大体积混凝土温度控制难度极大,有必要采取针对性的温度控制措施以保证混凝土施工质量。根据承台的结构特点,从合理分层浇筑、优化混凝土配合比、严格控制入模温度、布置冷却管等方面对大体积混凝土进行了有效温控。采用缓凝型高性能减水剂,使得混凝土在3~4 d达到峰值温度,有效降低了峰值温度。对承台大体积混凝土温度场进行了实测和仿真分析,结果表明:混凝土入模温度为25.0~27.6℃;承台各层的实测峰值温度为56.1~63.8℃,计算值为57.1~64.2℃,且出现的时间基本吻合;最大实测内外温差为25.9℃,计算值为26.3℃。承台各层混凝土的抗裂安全系数均大于1.44,表明结构受力均处于安全状态。  相似文献   

14.
大体积混凝土承台整体浇筑能提高承台的整体性,但水泥的水化热反应较分层浇筑时剧烈,产生温度裂缝的概率高。文中采用有限元结构计算程序,用水化热分析模块模拟计算承台整体浇筑的过程,提出了控制混凝土内部最高温度、降低混凝土降温速率、优化边界约束等温控措施。  相似文献   

15.
张剑啸 《桥梁建设》2007,(4):56-58,74
牛角坪特大桥2号主墩高98 m,除底部6 m、墩顶1.2 m范围为实体段外,其余部分均为空心薄壁结构,混凝土量15 222 m3。该墩身具有截面面积大、墩高、单次混凝土浇筑方量大以及混凝土级别高、泵送高度高等特点。介绍2号主墩墩身施工技术。  相似文献   

16.
以东海大桥承台大体积混凝土海上浇筑为背景,介绍钢套箱承台大体积混凝土养护工艺、东海大桥承台大体积混凝土中试试验和承台大体积混凝土浇筑实际情况.  相似文献   

17.
大体积混凝土在现代桥梁施工中运用已经常见,特别是桥梁的承台,一般情况单次浇筑混凝土量达5 000多m3,有效解决混凝土施工期的水化热即为承台施工的关键。  相似文献   

18.
王保华 《交通科技》2009,(Z1):18-20
阐述了大体积混凝土承台温度应力的基本作用原理以及温度应力在承台内部的分布情况,通过实例计算大体积混凝土在浇筑各阶段的温度变化和应力变化,分析施工阶段控制大体积混凝土承台裂缝应该注意的细节。  相似文献   

19.
河南信阳河大桥为独塔双索面斜拉桥 ,主塔承台混凝土总量为 386m3 。该文分析了混凝土裂缝产生的机理 ,进行了主塔承台大体积混凝土的温度应力计算 ,提出了防止温度裂缝产生的混凝土施工及温度控制措施。  相似文献   

20.
港珠澳大桥珠澳口岸连接桥为(3×65+40)m预应力混凝土连续梁桥,主梁采用大节段现浇施工,每段混凝土浇筑量为1 248~1 726m~3。针对大体积预应力混凝土施工,结合该桥实际情况,分析了施工期4种裂缝(受力裂缝、温度裂缝、塑性裂缝、约束收缩裂缝)产生的主要原因。根据裂缝的不同成因及桥梁结构特点,通过支架合理设计、预压及合理的混凝土浇筑顺序控制受力裂缝;通过混凝土配合比、入模温度及合理的养护措施等控制温度裂缝;通过下料点及振捣点合理设置、二次抹压及大面积覆膜锁水技术控制塑性裂缝;通过部分预应力筋早期预张拉技术控制约束收缩裂缝。通过以上各种裂缝控制技术的实施,施工期的裂缝得到了良好控制,确保了结构耐久性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号