首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
安徽省巢湖市湖光路跨巢湖大桥主桥为独塔双索面混合梁斜拉桥,边跨设2个辅助墩,跨径布置为(40+45+117.5)m+300m。主跨及边跨近塔108.5m范围主梁采用结合梁,梁高3m,全宽37m。结合梁由混凝土桥面板和钢箱梁组成,钢箱梁采用分离式双箱PK断面,单个钢箱梁纵梁顶宽(含风嘴)10.21m,底宽4m。两纵梁之间采用横梁连接,横梁采用工字形断面,间距4.5m。横隔板采用实腹式和空腹式2种,为充分发挥材料性能,横隔板间距取2.25m。两纵梁之间设3道小纵梁,小纵梁采用工字形断面,为使桥面板达到双向板的受力性能,小纵梁高度取0.8m。结合段主纵梁采用后承压板格构式方案、小纵梁采用前承压板式方案以保证主梁内力的平顺传递和刚度的平缓过渡。结合梁段斜拉索采用锚拉板锚固。  相似文献   

2.
根据国内外钢箱梁的设计经验,选取3种不同的横隔板设置形式,通过有限元方法建立钢箱梁的空间有限元模型,计算横隔板与U肋相交的桥面板、U形加劲肋的对接处、横隔板过焊孔处等4种构造细节在车轮荷栽作用下的应力幅,得出横隔板设置形式对桥面板疲劳应力幅的影响.  相似文献   

3.
为评估正交异性钢桥面板的疲劳寿命,给维修和设计提供参考,以某连续钢箱梁桥(设置高1.8 m的横隔板与净高0.9 m的横肋)为背景进行研究.采用ANSYS子模型技术建立了钢箱梁节段模型,基于热点应力法对横隔板与横肋弧形切口起始处和弧形切口自由边两处疲劳细节进行了寿命预测,并就两处细节疲劳性能对弧形切口型式和板厚变化的敏感...  相似文献   

4.
针对钢箱梁正交异性钢桥面板极易出现的疲劳破坏,在有限元分析软件ANSYS中建立某钢箱梁车行天桥的疲劳分析模型,分析不同顶板厚度及不同横隔板间距下的4个典型疲劳细节点处的疲劳应力,并根据钢桥设计规范验算这些工况下的等效常值应力幅。结果表明,桥面板厚度的适当增加,可以有效降低各构造细节处的疲劳应力,而横隔板间距的减少,也能在一定程度上改善桥面板的疲劳性能。  相似文献   

5.
沌口长江公路大桥主桥为主跨760m的半飘浮体系双塔双索面PK钢箱梁斜拉桥,是长江上首座双向8车道高速公路特大桥,主梁全宽达46m。针对该桥宽幅、大跨及重载交通等特点,设计中对结构约束体系、主梁剪力滞效应、钢桥面抗疲劳性能、桥塔横向受力等关键技术问题进行研究。提出采用大吨位"弹性+阻尼"复合式新型阻尼器对结构总体约束体系进行优化;采用带中纵腹板的PK箱形断面并适当增加梁高,以弱化宽幅主梁的剪力滞效应;利用小型智能焊接机器人实现钢桥面板与纵向U肋的双面角焊缝连接;对横隔板处U肋过焊孔疲劳细节构造进行优化;对外侧2个车道正交异性钢桥面板的横桥向局部刚度进行加强;通过在桥塔中塔柱设置横向预拱改善桥塔横向受力。  相似文献   

6.
某斜拉桥为主跨310m的重载钢—混凝土混合梁独塔斜拉桥。经过多年运行,该桥钢箱梁横隔板出现了大量裂缝,为提高桥梁的安全性,对其钢箱梁横隔板裂缝成因进行研究。采用MIDAS软件建立钢箱梁节段有限元模型,对55t重车后轴分别在中间车道和边车道加载时横隔板的应力进行分析,分析结果表明:钢箱梁横隔板产生裂缝的主要原因在于其上的预留人孔过大致使U肋开孔处的应力幅过高,超出结构的疲劳强度,造成了疲劳开裂。据此提出了在人孔处设置桁架结构的加固方法来改善结构受力和抗疲劳性能,并对桁架的布置方案和横断面形式进行了优化比选,得到了较优的加固方案。实践证明加固方案实施效果良好。  相似文献   

7.
某桥主梁采用正交异性钢桥面板结构,为研究在轮载作用下,该桥正交异性钢桥面板受力和抗疲劳性能是否满足要求,建立该桥正交异性钢桥面板局部模型,计算轮载作用下其挠度、曲率半径和应力,并结合规范估算构造细节的疲劳强度。结果表明,在轮载作用下,桥面板主要变形区域较小,最大肋间相对挠度为0.28mm,满足限值要求,但最小曲率半径不满足规范规定;在纵向U肋、横隔板与桥面板连接处局部出现较明显的应力集中现象,且横向正应力普遍大于纵向正应力,但应力未超过限值;疲劳寿命最小的连接细节为纵肋与横梁的连接部位和横梁腹板开孔部位,应力幅值分别达77.4 MPa和127.9MPa,疲劳寿命分别为1.8×106和3.4×105次,远小于规范要求;该桥需要通过改变构造以及设计合理的桥面铺装来改善结构受力情况。  相似文献   

8.
中朝鸭绿江界河公路大桥主桥为(86+229+636+229+86)m双塔双索面钢箱梁斜拉桥,采用半飘浮支撑体系。扁平钢箱梁全宽33.5m、高3.5m,顶板厚16mm、20mm,底板厚12mm、14mm,顶、底板采用U肋加劲;箱内横向设置2道纵隔板,支撑区附近采用板式纵隔板,其余位置采用桁架式纵隔板(腹杆采用焊接T形杆件);箱内横隔板采用板式横隔板。斜拉索在塔端采用钢锚梁加钢牛腿锚固系统,在梁端采用钢锚箱锚固系统。设计过程中针对正交异性钢桥面板、底板、横隔板、纵隔板、钢锚梁等多个关键位置,提出钢结构细节设计的改进措施,并对焊接工艺以及制造标准提出了要求。  相似文献   

9.
宽幅钢箱梁横向受力较大的特征使得横隔板与U肋过焊孔周边细节构造容易出现疲劳破坏。为提高该细节构造的疲劳性能,以沌口长江公路大桥为背景,针对横隔板U肋过焊孔的常用形式,采用ANSYS软件建立钢箱梁节段的有限元模型,通过仿真分析比较不同形式过焊孔的结构强度及疲劳性能,结合其局部受力机理及参数化分析,提出改进的过焊孔形状和加厚横隔板顶部齿形板的优化措施,并利用损伤度原理验证改进效果。结果表明:提出的横隔板与U肋过焊孔改进形式明显改善了该细节构造的疲劳性能;加厚横隔板顶部的齿形板,可明显降低过焊孔的疲劳应力幅,提高其疲劳寿命。  相似文献   

10.
自锚式悬索桥结构新颖美观,大缆和主梁锚固构造是其关键部位。对上海浦东川环南路浦东运河桥的总体设计作了介绍,该桥为112 m+72 m主跨的自锚式选索桥。采用双主梁的钢箱梁,锚箱为钢结构。钢锚箱设计新颖,构造独特。由于其受力特点不易认识,因此,采用板壳单元的有限元模型进行分析,得到了其传力途径及各部位应力水平。  相似文献   

11.
为了研究横隔板变形对曲线钢箱梁桥焊缝细节疲劳应力的影响,以某三跨连续钢箱梁高架桥为背景,建立正常横隔板和变形横隔板的钢箱梁模型,针对横隔板分别与U肋、腹板加劲肋、底板开口肋连接焊缝3处细节,研究横隔板变形对各细节应力影响面和最不利工况下应力状态的影响,对比面内、外应力对各细节疲劳损伤的贡献。结果表明:横隔板变形对横隔板-腹板加劲肋细节和横隔板-底板开口肋细节应力影响范围和最不利位置影响显著,并且会导致各疲劳细节的拉应力和压应力有较大增幅,相对于正常横隔板而言更容易产生疲劳损伤;横隔板变形会导致各细节面外应力占比增大,促使面外应力成为各连接焊缝疲劳损伤的主要因素。  相似文献   

12.
清远市北江四桥为双塔单索面超宽幅大悬臂钢-STC桥面板钢-混凝土混合斜拉桥,超宽幅钢-STC轻型组合桥面横向悬臂大的结构特点,使该桥在横向偏载情况下,钢-STC层承受较大的拉应力。钢桥面的疲劳问题一直是桥梁设计关注的重点,对该桥应用热点应力法重点分析STC对该桥钢桥面疲劳性能的影响:超宽幅钢-STC轻型组合桥面的局部刚度由于STC层的介入而大幅提高,降低了钢桥面板的活载应力幅,进而延长疲劳寿命,通过疲劳受力分析对STC层及钢箱梁在横隔板、U肋腹板等疲劳细节位置的抗疲劳性能进行研究。  相似文献   

13.
现场监测能真实反映结构的构造细节、边界约束和桥面加载条件,是正交异性钢桥面板疲劳评价最合理有效的方法之一。基于某正交异性桥面板钢箱梁桥,通过监测随机车流下同一车道紧邻的2个横隔板上疲劳敏感构造细节的应力响应时程,对比2种不同弧形切口正交异性钢桥面板构造细节的应力响应;通过雨流计数法获取构造细节应力谱,再基于米勒线性累积损伤准则计算疲劳等效应力幅和等效加载次数;最后基于AASHTO LRFD规范条文计算相关构造细节的疲劳寿命。研究结果表明:横隔板弧形切口构造细节总应力是面内应力分量主导,小弧形切口峰值应力时面外应力对总应力的比不大于23%,而大弧形切口仅略减小到20%,但大弧形切口削弱了横隔板腹板,使得传递面内竖向应力的面积减小,反而增大了弧形切口构造细节的应力,因而大弧形切口构造细节的疲劳寿命仅为10.6年,低于小弧形切口的14.2年;对纵肋-横隔板(Rib-to-floorbeam,RF)焊缝构造细节而言,大弧形切口减轻了RF之间的相互约束,能一定程度减小RF纵肋侧和RF横隔板侧的应力响应;但增大了RF围焊处因弯曲产生的压应力,从而导致横向泊松效应在该构造细节处产生大的二次应力;采用小弧形切口时估计的纵肋-横隔板焊缝构造细节的疲劳寿命大于100年,而采用大弧形切口对应寿命仅为31年。研究结果可为正交异性钢桥面板抗疲劳设计和加固提供有益的参考。  相似文献   

14.
为研究钢桥面板疲劳开裂局部区域引入钢或高性能材料加固构件的装配式加固方法,以钢桥面板纵肋与横隔板交叉构造细节为研究对象,采用足尺模型试验对钢桥面板纵肋与横隔板交叉构造细节疲劳性能劣化及其疲劳开裂的栓接角钢装配式快速加固相关关键问题进行了试验和理论研究;基于断裂力学探究了纵肋与横隔板交叉构造细节三维疲劳裂纹的扩展特性、疲劳寿命预测及装配式快速加固方法的加固效果。研究结果表明:纵肋与横隔板交叉构造细节的疲劳裂纹萌生于焊趾并沿纵肋腹板进行扩展,其对结构力学特性的影响范围和程度随着裂纹的扩展而逐步加剧;加固后相应开裂部位关键测点和裂尖各测点的应力应变降幅分别达57%和80%,装配式加固构件与既有结构协同受力性能良好,能够有效抑制局部疲劳裂纹扩展;数值断裂力学分析表明,加固后裂尖应力强度因子降幅达90%,可有效抑制疲劳裂纹的进一步扩展。  相似文献   

15.
武汉青山长江公路大桥主桥为主跨938m的双塔双索面混合梁(由钢箱梁与钢箱结合梁组成)斜拉桥,桥面总宽48m。中跨主梁采用整体式钢箱梁,由钢主梁、正交异性钢桥面、钢箱梁横隔板组成。中跨钢主梁高4.5m,设置4道纵腹板。钢箱梁横隔板边侧货车道采用实腹式、中间轻车道采用镂空的桁架式,横隔板间距2.5m。通过参数匹配设计优化正交异性钢桥面的抗疲劳性能。边跨主梁采用钢箱结合梁,由槽型钢主梁与混凝土预制板通过湿接缝与剪力钉结合为整体。边跨钢主梁高4.06m,除顶板外的断面布置与中跨钢箱梁一致。针对钢箱结合梁墩顶负弯矩区混凝土板拉应力大的问题,采取控制混凝土预制板存放龄期、选择合适的预制板结合工序及顶落梁、湿接缝处理、加强结合板配筋等措施。钢箱梁与钢箱结合梁混合面设于桥塔中跨侧18m,通过构造细节处理使2种主梁结构传力安全、可靠。  相似文献   

16.
沌口长江公路大桥是长江上首座双向8车道高速公路特大桥,主桥采用(100+275+760+275+100)m的双塔双索面钢箱梁斜拉桥。该桥为半飘浮体系,塔梁间采用弹性+阻尼复合式减震装置。主梁采用PK断面钢箱梁,箱梁总宽46m(含风嘴),钢箱梁顶板与U肋采用双面焊接。桥塔采用钻石形结构,塔高233.7m,桥塔基础采用整体式群桩基础。全桥共240根斜拉索,采用空间双索面扇形布置,索体采用1 860MPa高强平行钢丝。斜拉索梁端采用锚箱锚固,塔端采用钢锚梁锚固。辅助墩采用实体墩,墩柱顶部设系梁形成框架结构,墩柱下采用整体式承台+直径3m的大直径桩基。过渡墩顶部设置较大尺寸的墩帽,墩柱下采用分离式矩形承台+直径3m的大直径桩基。  相似文献   

17.
鱼山大桥通航孔桥为(70+140+180+260+180+140+70)m的钢-混凝土混合梁连续刚构桥。该桥主梁主跨中部85m采用钢箱梁,其余位置采用混凝土箱梁,两者之间通过5m的钢-混结合段连接。主梁除墩顶块外,均采用节段预制拼装工艺。为保证预制混凝土梁节段与钢箱梁节段的高精度、高可靠性连接,该桥钢-混结合部采用部分截面连接承压传剪式结构,钢箱梁采用有格室的后承压板形式,并在钢-混结合段与混凝土梁的交接位置设置90cm湿接缝作为悬臂拼装施工调整空间。为改善正交异性钢桥面板的疲劳性能,该桥正交异性钢桥面板采用厚边U肋技术,对U肋边缘进行局部加厚,在材料用量基本不变的条件下,将U肋与桥面板连接处70MPa疲劳细节的等效加载次数提高到常规U肋的1.63倍。为提高钢桥面铺装的耐久性,该桥采用极限拉伸应变≥2%的高韧性混凝土+沥青的铺装方案,实现了钢桥面与铺装的协调变形。  相似文献   

18.
为研究结构参数对单箱多室波形钢腹板组合箱梁桥动力特性的影响,以南昌市朝阳大桥非通航孔桥为工程背景,利用有限元分析软件ANSYS建立该桥的空间有限元模型,分析横隔板和横隔梁布置、钢腹板板厚、钢腹板与横隔梁连接方式、支座约束及箱梁截面形式对该桥频率及振型的影响。结果表明:端横隔板对结构基频影响较大,中横隔梁主要影响桥面板局部振动;结构各阶频率随着腹板厚度增加略微增加;腹板与横隔梁的不同连接方式对各阶频率与振型影响不大;双固定支座可以限制结构横向弯曲,延缓桥面板局部振动出现;合理选择箱梁翼缘板宽度和箱室宽度可以有效限制结构扭转变形。  相似文献   

19.
本文选取U肋与桥面板连接区域、U肋与横隔板交叉部位、U肋等细节,通过实桥静力试验,结合有限元模型分析,研究正交异性钢桥面板局部应力的大小和分布规律.结果表明:钢桥面板各关键构造细节的应力影响线都比较短,纵向应力主要受两个横隔板间距的影响,横向应力受与其相邻的两个U肋间距内荷载的影响;当车辆通过时,测点会出现多个应力循环;在U肋-横隔板连接焊缝附近,U肋腹板上的应力水平较高;横隔板弧形切口自由边缘两侧应力性质相反,一侧受压、一侧受拉,应力幅值较大,存在疲劳开裂隐患;因此设计中应该对构造细节进行详细研究分析,并注意焊接区域的细部设计与制造,避免疲劳开裂.  相似文献   

20.
为研究正交异性钢桥面板典型疲劳细节在单轮荷载作用下的应力及疲劳损伤度,以福州长门特大桥为背景,采用ABAQUS有限元软件建立钢桥面板节段模型和3处易开裂部位(横隔板-U肋焊缝、横隔板处和横隔板间的顶板-U肋焊缝)的子分析模型,分析车轮荷载作用位置变化时疲劳细节的应力时程;并采用雨流计数法分析各细节处的应力幅,对疲劳细节进行疲劳损伤度分析。结果表明:单轮荷载顺桥向位于相邻横隔板间时,对横隔板处的顶板-U肋焊缝应力产生较大影响;荷载横向分布接近±750mm时,疲劳细节的应力时程曲线较为平缓,荷载对其应力的影响较小;疲劳损伤最大的是横隔板处的顶板-U肋焊缝焊根部位,该部位易产生疲劳破坏。建议在该部位增设钢角撑或钢板等,以降低该位置的应力幅和疲劳损伤度,提高结构的耐久性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号