首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于煤油在混合料中的含量随施工过程持续变化,为研究煤油基降黏添加剂对温拌沥青混合料性能的影响,设计了两阶段的分析过程:在施工阶段,以沥青等黏温度确定添加剂用量,以裹附率试验校核拌和温度,同时由变温度成型试验确定压实温度,并根据马歇尔稳定度、流值指标确定残留添加剂的显著影响时间;在服役阶段,通过高温稳定性、低温抗裂性、水稳定性等性能指标评价添加剂残留的长期影响。结果表明:依据沥青等黏温度原则由拌和温度确定煤油基降黏添加剂剂量是合理的;拌和后煤油残留对混合料的显著影响不超过7d;煤油基复配添加剂中以橡胶胶乳和增黏附剂为主的成分补偿了煤油残留对混合料高温稳定性和水稳定性的不利影响。  相似文献   

2.
为了预估适用于温拌沥青混合料的拌和与压实温度,该文选择了4种基于不同机理的温拌添加剂,预估其合理的拌和温度和压实温度:在拌和温度预估阶段,以裹附率为控制指标,在考虑设定拌和温度的本质和温拌目的情况下,基于设定的温拌温度确定添加剂的合理掺量;在压实温度预估阶段,以变温度击实试验为手段,基于等密实度-击实温度类比原则,建立普通热拌与温拌混合料之间空隙率指标的对应关系,进而明确温拌混合料的可压实温度范围。研究表明:沥青黏度受到拌和温度和添加剂掺量的双重影响,基于设定温拌降温幅度并以裹附率为控制指标确定的添加剂掺量是合理的;由于添加剂降黏机理的不同,导致其在施工不同阶段的含量与状态不同,从而对施工温度的影响略有差异。  相似文献   

3.
为了探讨赤泥对温拌沥青的改性作用,制备了5种不同掺量的赤泥改性沥青试样,主要研究赤泥对改性沥青黏度及温度敏感性的影响,在控制剪切率、掺量的基础上进行不同温度下的布氏黏度试验,通过不同温标下的黏温指数分析了赤泥掺量对沥青温度敏感性的影响。结果表明:温度高于135℃时,改性沥青的黏度受剪切率的影响逐渐变小;赤泥掺量为5%的改性沥青黏度最大,温度敏感性最小;赤泥掺量为3%时,可在一定程度上起到降黏的效果。  相似文献   

4.
邓金 《路基工程》2018,(5):85-89
对回收沥青掺量分别为0%,20%,40%,60%,80%的泡沫温拌再生沥青和热拌再生沥青进行针入度试验,布氏黏度试验和动态剪切流变试验,研究其温度敏感性能。结果表明:回收沥青的加入可以降低泡沫温拌再生沥青和热拌再生沥青的温度敏感性能,且泡沫温拌再生沥青温度敏感性要小于热拌再生沥青,泡沫温拌再生沥青的力学性能相对稳定;采用黏温指数|VTS|和复数模量指数CNI评价泡沫温拌再生沥青的温度敏感性较为合理。  相似文献   

5.
为研究不同类型温拌剂对高黏沥青及其混合料性能的影响,选择3种常用温拌剂,以不同掺量掺入高黏沥青中,并进行路用性能试验,验证不同温拌剂对高黏沥青降黏效果的差异。结果表明:不同类型温拌剂对TPS高黏沥青基本性能指标的影响差异较大;有机降黏类温拌剂Sasobit和EC120降黏效果相当,均能使高黏沥青施工温度降低10℃左右,乳化型温拌剂Ev3G能使高黏沥青施工温度降低20℃左右。综合比较分析,乳化型温拌剂Ev3G与TPS高黏沥青的配伍性更好,确定其最佳掺量在0.6%左右。  相似文献   

6.
利用布氏黏度试验,测定不同温拌剂掺量时温拌沥青黏度随剪切速率、温度的变化,对比研究温拌沥青和基质沥青的黏温性能。试验结果显示,当温度超过120℃时,温拌沥青逐渐转变为牛顿流体,剪切速率改变引起的沥青黏度改变很小,基本可忽略;当温度相同时,温拌剂掺量对沥青黏度的影响与试验温度有关,当温度为90~100℃时,随着温拌剂掺量的增多,沥青黏度逐渐增大,而当温度在105~150℃之间时,随着温拌剂掺量的增多,温拌沥青的黏度逐渐降低;当温拌剂掺量为2%~4%%时,温拌剂在高温时对沥青的降黏效果较好,同时低温时对沥青黏度的提高较大。相比于基质沥青,温拌沥青的施工温度显著降低,拌和温度与碾压温度的降低幅度都在10℃左右。  相似文献   

7.
为了探究温拌剂的种类、掺量对SBS改性沥青的黏度及黏流特性的影响,采用布氏旋转黏度仪测定在不同温度(60℃~175℃)下、2种温拌剂在3种掺量下的黏度,并运用Saal公式拟合黏温曲线分析温拌剂对SBS改性沥青黏度的影响,再计算黏流活化能,分析其黏流特性。研究结果表明:在相对低温阶段(60℃~115℃),SBS改性沥青的黏度与温拌剂掺量呈正比;在高温阶段(135℃~175℃)呈反比,中间存在明显的转折临界温度;Sasobit在掺量为3%时对SBS改性沥青的黏度影响趋于稳定,而LDPE随着掺量的增加,对SBS改性沥青黏度的影响较大;黏流活化能的大小不能准确地反映沥青黏度的变化。  相似文献   

8.
新型温拌添加剂对沥青性能影响的研究   总被引:1,自引:1,他引:0  
Sasobit温拌技术是目前发展最为成熟、应用最广的温拌技术之一,但该技术不仅经济成本高,而且一直被国外所垄断。在国内,温拌添加剂研究与开发也很多,可是性价比普遍偏低,研发的温拌添加剂与Sasobit温拌添加剂对沥青降黏效果和其它性能影响的比较研究报道更是少之又少。因此,首次比较研究了由有机添加剂OMD、塑料再生蜡ROW和无机稳定剂ISD三种成分自主合成的一种新型沥青温拌添加剂OCAA与Sasobit温拌剂对基质沥青、成品改性沥青的黏度效果和常规性能影响情况,发现该温拌添加剂对沥青的降黏效果和常规性能影响不仅与Sasobit温拌剂相近,部分性能甚至更优,更具市场竞争力。  相似文献   

9.
采用中海110~#沥青,并选取Sasobit^■和External^■ET-3100两种温拌剂,分别在3个掺量水平下调配温拌沥青。通过旋转黏度试验,观察温拌剂的降黏、降温效果,同时从物理化学机理上分析温拌剂的降黏原理。进一步地,采用流变学测试方法考评温拌剂对沥青结合料高温抗车辙、中温抗疲劳、低温抗开裂性能的影响。研究表明:Sasobit^■通过自身熔化起到物理降黏作用;ET-3100温拌剂通过与沥青中含有羧基(-COOH)的有机物发生酯化反应降黏,两者均起到了较好的降黏降温效果;Sasobit^■可显著提高沥青的高温抗车辙性能,但降低了沥青的中温抗疲劳性能和低温抗裂性能;ET-3100温拌剂对沥青的高温性能无明显影响,对中温性能有轻微降低,但提高了其低温抗裂性能。实例证明:将基于流变学的测试方法应用于温拌沥青性能比选是全面可行的。  相似文献   

10.
通过在沥青混合料中掺入不同剂量的自行开发的温拌添加剂,从温度敏感性方面分析它对沥青性能的影响程度。在温拌添加剂的最佳掺量下,对沥青混合料的抗永久变形能力、低温抗弯拉能力、抗水损坏能力进行路用性能验证,并与热拌沥青混合料进行比较。结果表明:一定掺量的温拌添加剂可提高沥青的高温性能,温拌沥青混合料在保证与热拌沥青混合料相同路用性能要求的前提下,可降低施工温度。  相似文献   

11.
为研究温拌剂种类及掺量对沥青性能的影响,通过在沥青中添加不同种类不同掺量的温拌剂制备温拌沥青胶结料,并对温拌沥青胶结料进行不同程度的老化处理:旋转薄膜烘箱老化(RTFO)和压力箱老化(PAV)。采用布氏旋转黏度试验比较其降黏效果、采用沥青高温分级(HTPG)试验比较其高温抗车辙能力、采用沥青中温分级(ITPG)试验比较其抗疲劳性能,采用扩展弯曲梁流变试验(Ex-BBR)比较其低温抗裂性能、采用双边缺口拉伸试验(DENT)比较其抗延性断裂性能。结果表明:所选用的两类温拌剂均具有较好的降黏效果,能满足施工要求,温拌剂A能显著增强温拌沥青的高温抗车辙性能,对沥青的抗疲劳性能、低温抗裂性能略微不利,但对沥青的抗延性断裂性能有减弱效果;温拌剂B对此类沥青的性能影响仅在低温抗裂性能上体现出微小减弱效果。  相似文献   

12.
沥青混合料温拌技术较传统的热拌工艺具有减少环境污染和节约能源的优点,温拌添加剂对沥青的降粘效果与沥青性质有很大关系.该文选用重交通道路沥青AH70#,分别掺加SasoWMA添加剂和人工合成沸石Aspha- min温拌添加剂制备温拌改性沥青,研究2种添加剂对沥青物理性能的影响,并确定温拌添加剂的合适掺加量.  相似文献   

13.
为研究温拌剂对生物沥青结合料高温流变性能的影响,以生物沥青结合料和温拌剂为研究对象,对掺加了温拌剂的生物沥青结合料分别进行动态剪切流变试验(DSR)和多应力重复蠕变恢复试验(MSCR),以复数模量G*、相位角δ、车辙因子G*/sinδ、恢复率R和不可恢复蠕变柔量Jnr为评价指标,研究了2种温拌剂类型(质量比为2%的Sasobit和质量比为0.35%Rediset)、3种生物质重油掺量(质量比分别为5%,15%,25%)对生物沥青结合料高温流变性能的影响。研究结果表明,未老化的生物沥青结合料抗车辙性能随着生物质重油掺量的增加而降低,黏性成分亦随着生物质重油掺量增加而减小,短期老化后生物沥青结合料抗车辙性能随着生物质重油掺量的增加而增大,弹性成分比例明显增大。Sasobit温拌剂的加入能够降低生物沥青结合料的黏性行为,增强延迟弹性,提高生物沥青结合料的高温抗车辙性能。加入Sasobit使得生物沥青的复数模量G*和车辙因子G*/sinδ值提高超过100%,不可恢复蠕变柔量Jnr值降低大于60%。Rediset温拌剂可以降低生物沥青结合料的高温老化速度,对生物沥青结合料的老化有较强的抑制作用。具有抗老化的优势,其温度敏感性比Sasobit温拌剂要低。Sasobit和Rediset温拌剂均可以提高生物沥青应力敏感性,使生物沥青在高应力水平下的黏弹性更加显著。  相似文献   

14.
沥青路面铣刨料掺量的提升能够显著提高厂拌热再生沥青混合料的经济环境效益,但同时也对再生混合料级配和性能的稳定性带来了影响,现阶段针对高掺量(RAP掺量超过30%)厂拌热再生沥青混合料性能的评价及研究尚未得到确切而公认的结论。基于室内性能试验研究,通过开展添加剂(再生剂和温拌剂)对高掺量厂拌热再生沥青混合料路用性能的研究,分析添加剂类型及掺量对其各项性能的显著性影响,总结了各类添加剂对不同RAP掺量的厂拌再生沥青混合料各项性能的影响规律。  相似文献   

15.
为了分析温拌剂对沥青混合料各项性能的影响,采用不同的温拌剂掺量制备温拌沥青混合料,测试其马歇尔稳定度、高温性能、低温性能及水稳定性,并结合温拌剂掺量与各项性能的关系曲线,推荐了最佳的温拌剂掺量。然后采用最佳温拌剂掺量,对比分析了温拌沥青混合料和基质沥青混合料、SBS改性沥青混合料的各项路用性能。试验结果表明:温拌剂在熔点以下的温域主要起到增粘作用,在熔点以上的温域主要起到降粘作用,因此可以改善沥青混合料的施工和易性,提升沥青混合料的高温性能、水稳定性;由于温拌剂中蜡成分在低温时呈现脆性,因此温拌沥青混合料的低温性能有所降低。  相似文献   

16.
伸缩缝弹塑体由于黏度过高,在施工过程中往往会过量加热,进而导致施工困难、环境污染和材料短期老化等问题。为改善这一情况,选用4种温拌剂对高分子聚合体改性沥青胶结料进行改性。对改性前后的胶结料开展旋转平板黏度法(RPV)和多应力蠕变恢复试验(MSCR),分别测试胶结料黏度及高温性能,并进行改性效果综合评价。结果显示,添加温拌剂后胶结料黏度下降,同时高温性能得到提升。综合降黏效果和高温性能改善效果,推荐基于有机添加剂的MW-1型温拌改性剂作为高黏弹沥青胶结料的温拌改性添加剂。  相似文献   

17.
赵百磊  涂洪涛 《交通科技》2021,(1):125-128,132
为研究温拌剂对SBS改性沥青性能的影响,分别以不同掺量的Evotherm-3和Sasobit温拌剂制备温拌沥青,通过基本物理性能及流变性能试验对比评价其性能.基本物理性能测试结果表明,温拌剂的掺加降低了 SBS改性沥青针入度和延度,但软化点提升,且2种温拌剂降黏效果明显;流变性能试验表明Evotherm温拌剂对SBS改...  相似文献   

18.
针对当前国内外在评价温拌沥青低温性能指标上的局限性,为更精准地评价温拌沥青的低温抗裂性能,将不同掺量的降黏类温拌剂Sasobit加入到基质沥青中制备温拌沥青,并分别进行旋转薄膜烘箱老化和压力箱老化来对温拌沥青的低温性能评价指标展开了研究。采用沥青弯曲梁流变试验来获得温拌沥青的劲度模量、劲度模量变化率,计算得到低温连续分级温度及k指标。另外,运用Burgers黏弹性模型对BBR试验数据进行参数拟合来获得Burgers模型的4个黏弹性参数,并构建了低温性能综合评价指标J。通过沥青混合料小梁弯曲试验得到温拌沥青混合料的低温弯曲应变能密度,将弯曲应变能密度与各评价指标进行了相关性分析和比选。试验结果表明:温拌剂Sasobit的加入削弱了沥青的低温抗裂性能,这表现为更高的劲度模量、更低的劲度模量变化率、更高的低温连续分级温度、更大的k指标和J指标;Sasobit掺量越高,低温性能削弱效果越显著;利用单一的劲度模量或劲度模量变化率m指标对温拌沥青的低温性能评价存在一定片面性,综合考虑沥青低温变形能力和应力松弛能力的低温连续分级温度、k指标及J指标能更加精确地评价温拌沥青的低温性能。  相似文献   

19.
通过对剪切速率、剪切温度、剪切时间三个参数拟定5个水平制备彩色高黏沥青,通过针入度、软化点、延度及60℃动力粘度评定其最佳制备工艺。最后通过布氏黏度绘制不同掺量高黏改性剂135℃-175℃的黏温曲线,确定其最佳施工温度用以指导实际施工。结果表明:彩色高黏沥青的最佳剪切温度为155℃,剪切速率4000r/min,剪切时间60min;不同掺量高黏剂彩色高黏改性沥青布氏黏度试验显示高黏剂显著改善沥青的黏结性能,但温度敏感性有所提高,建议最佳高黏剂掺量为17%。  相似文献   

20.
Sasobit~温拌橡胶沥青性能评价分析   总被引:1,自引:0,他引:1  
温拌橡胶沥青混合料具有低碳环保的突出优势,目前得到了越来越多的重视。温拌橡胶沥青是一种复合改性材料,胶粉和温拌剂的加入都会对沥青胶结料造成不同程度的影响,但是目前对温拌橡胶沥青性能的影响因素还未进行深入而系统的研究,导致温拌橡胶沥青材料和性能的选择尚缺乏明确的指导思想。该文选择目前常用的Sasobit温拌添加剂,采用正交试验方法合理设计Sasobit温拌橡胶沥青性能试验,结合方差分析和极差分析方法评价胶粉目数、胶粉掺量和温拌剂掺量对考核指标影响的显著性及影响规律,从而为Sasobit温拌橡胶沥青的材料和性能的选择提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号