首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
本文介绍了采用有限元技术来分析船舶振动的建模方法。论述了一维梁模型、二维平面模型、三维空间模型和混合模型这几种常用计算模型的特点,介绍了目前船舶振动预报的有限元技术应用概况。  相似文献   

2.
船舶耦合振动部件模态综合法   总被引:2,自引:0,他引:2  
本文采用适用于研究船舶耦合振动的部件模态综合法,通过用这一方法对16000吨煤矿船总振动的实例计算,剖析了子结构之间的耦合振动及其在总振动中所起的不同作用,从而为船舶尾部、机仓双层底、上层建筑等局部结构振动与船体梁耦合振动的计算提供了理论依据。本文计算结果与实测值比较误差为1.2%。  相似文献   

3.
本文提出了适用于研究船舶耦合振动的部件模态综合法。通过用这一方法对16000吨煤矿船总振动的实例计算,剖析了子结构之间的耦合振动及其在总振动中所起的不同作用,从而为船舶尾部、机仓双层底、上层建筑等局部结构振动与船体梁耦合振动的计算提供了理论依据。本文计算结果与实测值比较误差1.2%。  相似文献   

4.
船舶结构振动特性研究   总被引:17,自引:1,他引:16  
本文利用SHELL63、BEAM4、SOLID95、COMBIN14四种类型共64187个有限单元和30种几何参数建立了接近于真实船舶(包括机舱动力设备)的有限元模型。在考虑流一固耦合状态下,用有限元技术对船舶进行模态分析以及船舶对激励力的振动响应数值计算。在模态分析过程中,采用了矩阵缩减的方法来消除局部模态,以便获得整体弯曲和扭转振动模态。然后对主机单层隔振器和辅机双层隔振器的减振效果进行了预估。将建立的接近于真实船舶的有限元模型和尾部结构的三维有限元和梁组合模型的数值计算结果进行比较,得到一些重要结论。本文为船舶设计人员在船舶设计阶段,预报船舶结构振动提供了一条新的途径。  相似文献   

5.
目前普遍应用传统的梁的理论来计算船体振动,但其高谐调误差较大,失去实用意义。本文研究了应用模-杆二维有限元模型计算船舶总体垂直振动的方法,在709机上采用多单元组合结构动力计算程序,计算了船A的船体总振动特性与响应。计算结果与实测的比较表明,本文的二维有限元模型较传统模型具有优越性,其四、五谐调的计算误差由20%降为5%以内,提高了高谐调的计算精确度(动响应计算结果与实测值也较一致)。而且计算模型简单,原始数据准备方便,可采用中小型计算机计算,可供船舶设计阶段计算船舶振动特性使用。  相似文献   

6.
船体振动有限元分析的方式已广泛应用于船舶结构设计之中,但在设计初期许多计算因素无法精确模拟,因此振动分析的结果与实船的最终状态可能存在一定偏差。本文以某型 LNG船为实例,简要介绍船舶建造过程中,通过有限元检验振动分析结果的方式。以及船舶建造结束后,简单、可行的全船及局部振动性能改进方案。通过比较分析,得到经济可行的船舶减震方案。  相似文献   

7.
船体振动有限元分析的方式已广泛应用于船舶结构设计之中,但在设计初期许多计算因素无法精确模拟,因此振动分析的结果与实船的最终状态可能存在一定偏差。本文以某型LNG船为实例,简要介绍船舶建造过程中,通过有限元检验振动分析结果的方式。以及船舶建造结束后,简单、可行的全船及局部振动性能改进方案。通过比较分析,得到经济可行的船舶减震方案。  相似文献   

8.
邵亮 《江苏船舶》2021,38(6):13-15
为减少船舶舱室低频辐射噪声对船舶设备使用寿命的影响,根据典型船舶模型,建立某小型船的有限元模型并进行了船舶振动模态分析.同时采用边界元方法,将MSC.PATRAN软件建立的有限元模型导入SYS-NOISE软件中作为船舶声辐射的边界元模型,在同一噪声源下进行噪声计算,研究船舶舱室内部的低频声辐射特性.结果 表明:数值计算结果在总声压级上与实测结果仅相差1 ~8 dB,进一步说明此船噪声的低频预报方法切实可行.  相似文献   

9.
船舶水下辐射噪声特性研究   总被引:8,自引:0,他引:8  
本文采用有限元/边界元(FEM/BEM)方法对船舶水下辐射噪声特性进行研究.首先应用五种类型的有限单元建立了接近于真实船舶结构的有限元模型(包括机舱动力设备),并应用有限元法完成了流-固耦合状态下,船舶结构振动位移响应数值计算.然后将有限元模型的外表面处理成边界元模型,并由船舶外表面位移响应计算得到用于水下辐射噪声计算的速度边界条件.最后利用边界元技术对船舶水下辐射噪声特性进行研究.本文预估了仅考虑推进柴油机激励、柴油发电机组激励、齿轮箱激励以及所有激励情况下的船舶水下辐射噪声,并将其数值计算与实际测量结果比较,比较结果符合良好.  相似文献   

10.
船舶总振动固有频率实用算法   总被引:2,自引:0,他引:2  
分别用一维梁有限元方法和三维有限元方法计算3艘实船总振动固有频率,对计算结果进行统计分析,提出对一维梁有限元方法计算结果的修正,利用110000t油船进行验证。用一维梁有限元方法计算时考虑剪切滞后影响系数;用三维有限元方法计算时,是在ANSYS软件中建立全船的三维空间有限元模型,进行模态分析。通过计算证明该方法能有效改进一维梁有限元计算方法,可快速准确地预报船舶总振动固有频率。  相似文献   

11.
With increases in ship size and speed, shipboard vibration becomes a significant concern in the design and construction of vessels. Excessive ship vibration is to be avoided for passenger comfort and crew habitability. In addition to the undesired effects on humans, excessive ship vibration may result in the fatigue failure of local structural members or malfunctioning of machinery and equipment. The propeller induces fluctuating pressure on the surface of the hull, which induces vibration in the hull structure. These pressure pulses acting on the ship hull surface above the propeller are the predominant factor for vibrations of ship structures are taken as excitation forces for forced vibration analysis. Ship structures are complex and may be analyzed after idealization of the structure. Several simplifying assumptions are made in the finite element idealization of the hull structure. In this study, a three-dimensional finite element model representing the entire ship hull, including the deckhouse and machinery propulsion system, has been developed using solid modeling software for local and global vibration analyses. Vibration analyses have been conducted under two conditions: free–free (dry) and in-water (wet). The wet analysis has been implemented using acoustic elements. The total damping associated with overall ship hull structure vibration has been considered as a combination of the several damping components. As a result of the global ship free vibration analysis, global natural frequencies and mode shapes have been determined. Moreover, the responses of local ship structures have been determined as a result of the propeller-induced forced vibration analysis.  相似文献   

12.
本文提出了用膜元与集中质量的组合作为上层建筑物的力学模型,而在考虑上层建筑与船舶总体的耦合振动时主船体仍采用梁模型,从而简化了计算力学模型的形成工作。计算程序采用自动计入附连水质量和模态综合法(动态子结构法)相结合的形成,可以方便地判断上层建筑与船体梁振动之间的耦合关系。本方法可供船厂设计人员在详细设计阶段使用。本文着重论述上层建筑与船体梁耦合振动的计算方法及其在电算程序中的计算步骤。  相似文献   

13.
船体振动响应预报   总被引:18,自引:1,他引:17  
利用有限元技术对船体总振动、上层建筑整体和各层甲板局部自由振动频率及上层建筑振动响应进行了预报。介绍了用于振动计算的单层甲板模型、尾部上层建筑模型、全船模型和简化全船模型及应用实例。研究了上层建筑和船体之间的耦合影响,并根据具体算例对各种模型化方法的效果进行了评价。  相似文献   

14.
小水线面双体船船体总振动固有频率预报研究   总被引:1,自引:0,他引:1  
李强  王慧彩  王显正  刘见华 《船舶》2009,20(4):20-24
小水线面双体船是近代发展的一种新船型,不同于常规船型的单体船,其总振动模态计算非常特殊。应用有限元法进行小水线面双体船船体总振动的计算分析,结果表明该船总振动特性满足船体振动储备要求,可以认为该船的振动性能良好。  相似文献   

15.
采用耦合有限元,边界元法计算水中船体的弯扭耦合振动.文中用一维薄壁梁有限元模拟船体梁,在横剖面处用二维边界元方法计算结构表面卢压,推导出表征流体对振动特性影响的附加质量阵,编制了用流同耦合方法求解船体振动模态的程序.通过与采用ANSYS软件进行耦合场分析以及刘易斯方法得到的振动模念相比较,验证了文中方法的可行性和应用性.  相似文献   

16.
不对称船体结构动态特性研究   总被引:2,自引:0,他引:2  
聂武  李鸿 《中国造船》1996,(3):60-70
针对计算常规船舶结构动态特性的方法不适用于计算左右不对称横剖面船体梁动态特性的问题,本文将船体视为薄壁梁并离散成梁段,推导出迁移矩阵法迭代求解不对称船体结构固有及固有振型的公式系统,计算了左右不对称程度不同的梁结构及不对称船 梁的固有频率及振型。指出不对称梁 有振动为弯扭耦合振动,其固有频率与振动型的对应关系与对称梁不同。  相似文献   

17.
船舶总体振动分析需考虑对船体外部水的影响。通过建立水域三维有限元模型进行计算或者先计算出附加质量后,加入到结构质量中进行计算。随着有限元技术的发展,船舶大都采用三维有限元建模。传统方法,例如刘易斯附加水质量法,虽然考虑到纵向变形,但确没有忽略船体横剖面的变形,因而不够准确。采用三维边界元方法,考虑水中结构振动的三维效应,计算三维附加质量矩阵,并对水中结构振动进行分析。结果表明,水中结构振动是三维变形,应该采用三维附加质量矩阵进行振动分析。  相似文献   

18.
周平  赵德有 《船舶力学》2006,10(4):126-132
采用动态刚度阵法计算船体总振动的固有频率.该方法不但能简化计算模型,而且能获得较高精度的高阶固有频率.首先通过直接求解等直Timoshenko梁单元的运动微分方程,导出考虑剪切变形和转动惯量影响的平面梁单元动态刚度阵的解析表达形式;其次采用Wittrick-Williams算法结合二分法求解特征值;最后采用本方法计算299 500DWT超大型油船船体总振动的固有频率,并分别与一维梁有限元法和三维全船有限元法计算结果以及实测值进行比较,验证了方法的精确性和有效性.  相似文献   

19.
减小船体艉部振动的动力吸振器研究   总被引:10,自引:0,他引:10  
李俊  金咸定  王宏 《中国造船》2001,42(2):69-74
采用有限元法研究了动力吸振器减小船体梁结构谐波振动响应的有效性。在本文研究中利用由文献[1]给出的最优调谐参数,采用直接法计算谐波激励下船体结构的频率响应特征。本文分析了动力吸振器三种不同配置的情况,用来研究它们对减小船体谐波响应的敏感性和适用性,为动力吸振器的实船应用提供了理论依据。  相似文献   

20.
马乔一 《船舶工程》2017,39(9):8-10
本文采用有限元(FEM)和边界元(BEM)相结合的方法对船舶水下辐射噪声进行研究。首先根据船舶的实际情况建立三维结构有限元模型,包括船体结构、压载、主要动力设备及其隔振方式等,然后结合实船测试的柴油发电机组、推进电机机脚振动和轴系中间支撑基座振动数值,及船模试验得到的螺旋桨脉动压力,计算获得流固耦合下结构的响应,最后将船体外壳水线以下结构响应作为约束条件,通过边界元的方法对水下辐射噪声进行计算和分析。从而对船舶设计阶段水下辐射噪声初步评估方法进行修正,同时对比水下辐射噪声实船测试结果,计算准确性较高,修正后的计算评估方法能进一步提高了设计阶段水下噪声的评估精度,为船舶水下辐射噪声控制提供了依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号