首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高速列车轨道涡流制动试验台试制概述   总被引:1,自引:0,他引:1  
介绍了我国首台轨道涡流制动试验台的基本结构和原理,对试验机械传动装置与电磁机构进行了较为完善的工艺分析和设计。试验证明,试验台的组装,调试,试验是成功的,达到了设计要求。  相似文献   

2.
磁悬浮列车的涡流制动问题   总被引:9,自引:0,他引:9  
介绍了磁悬浮列车制动的一般问题以及德国TR07磁悬浮列车中涡流装置的供电电源、制动装置、有关的计算与试验曲线。最后介绍了用“迎流”有限元法求解制动力的方法。  相似文献   

3.
线性涡流制动由于其非黏着制动的特点,有望成为我国高速列车的新型制动方式。目前,涡流制动系统对既有线路轨道信号设备的电磁干扰缺乏相关研究,阻碍了该项技术的进一步应用。文章选取计轴器作为典型的轨道信号设备,在理论分析的基础上,采用ANSYS Maxwell和Twin Builder分别建立涡流制动电磁系统与计轴器的仿真模型。基于Twin Builder平台对涡流制动系统模型和计轴器模型进行联合仿真,分析涡流制动系统对计轴器的电磁干扰。试验结果表明,涡流制动电磁系统模型的仿真结果与理论计算结果相符,在无涡流制动系统的列车通过时计轴器感应电压为8.94 mV,验证了所建立模型的正确性;在有涡流制动系统的列车通过时会在计轴器感应线圈中产生峰值约为50 mV的干扰电压,使计轴器的感应电压超过设定阈值,从而可能产生误判,导致轨道区段的占用情况不准确,影响行车安全。该联合仿真模型可以辅助设计涡流制动装置,从而推动其应用。  相似文献   

4.
电磁涡流制动由于其不受列车黏着限制且衰减较小的优点,常用作高速列车的制动装置,但其结构尺寸和质量较大,磁极温升较高,阻碍了进一步推广应用。因此,在电磁涡流制动装置的基础上提出永磁涡流制动方案,结合理论计算和仿真分析,对比了相同极距和结构尺寸的2种涡流制动装置的气隙磁场,得出涡流制动力与气隙磁场的关系;计算了相同结构尺寸下永磁涡流制动和电磁涡流制动装置制动力和吸引力大小随速度的变化,同时对比分析了2种装置的磁极平均温度随速度的变化。研究结果表明,永磁涡流制动和电磁涡流制动的制动力计算方式具有等效性,相同结构下永磁涡流制动的制动力可达标准励磁参数下电磁涡流制动制动力的3.29倍,制动力相同时永磁涡流制动的磁极温升更小。  相似文献   

5.
多年以来,铁路一直在研究和试验列车涡流制动技术,涡流制动具有无磨损、无噪声、节能、经济和耐用等优点,其应用前景十分广阔.特别是,在即将发布的"欧洲高速铁路互通性技术规范"(简称TSI)中有关铁路噪声的规定,将要求轨道黏着系数降到更低,从而使涡流制动的优点就更为明显.  相似文献   

6.
基于涡流制动原理建立涡流制动力的数学模型,并利用ANSYS Maxwell软件建立LECB(线性涡流制动)三维仿真模型。根据控制变量法研究列车速度、气隙、励磁电流等因素对涡流制动特性的影响,并分析了常用制动和紧急制动工况下的电磁特性。研究结果表明:线性涡流制动力受速度的影响明显,低速时制动力快速上升并达到幅值,然后随着速度的增加,制动力下降并趋于平稳;励磁电流、励磁线圈匝数与线性涡流制动力成正相关,气隙、钢轨材料电导率与线性涡流制动力成负相关;相同条件下,励磁线圈材料为铝时,线性涡流制动系统产生的制动力大小优于励磁线圈材料为铜时产生的制动力。  相似文献   

7.
ICE3率先采用轨道涡流制动运营   总被引:3,自引:0,他引:3  
介绍了德国联邦铁路在ICE3上采用的涡流制动,阐述了涡流制动的适用条件。  相似文献   

8.
陈家敏  应博 《铁道车辆》2023,(6):88-91+110
盘形涡流制动装置的制动性能直接影响列车的运行安全,基于解析法和数值法对涡流制动的电磁场进行计算和分析,对比分析三种不同计算方法所得的电磁力,通过调整气隙、盘厚、磁导率、电导率和电流大小,优化性能参数,并与试验曲线进行比较,验证结果正确,为实际设计提供依据。  相似文献   

9.
线性涡流制动系统在工作过程中会对周围环境产生电磁干扰,从而影响车载设备和轨旁信号设备的正常工作,阻碍涡流制动技术在高速列车上的应用。为了满足高速列车线性涡流制动系统辅助设计需求,文章建立了线性涡流制动系统的有限元分析模型,分析了列车速度、励磁电流及气隙大小对线性涡流制动系统气隙磁场的影响,并与理论分析模型相比较,验证所建立模型的正确性。分析线性涡流制动系统产生的电磁发射特性,结果表明:线性涡流制动系统产生的电磁发射在沿z轴方向时先增大后减小,靠近励磁电磁铁时电磁发射强度最大,沿y轴方向时呈周期性分布,沿x轴方向产生的电磁干扰较小。  相似文献   

10.
基于涡流制动技术的高速磁悬浮列车安全制动控制研究   总被引:1,自引:0,他引:1  
通过对涡流制动系统结构的了解,分析了涡流制动的基本原理。根据推导出来的轨道涡流制动特性方程,分析了速度对制动力的影响。最后分析了列车制动过程中的受力情况,并对列车安全制动时的制动级别进行了判定。  相似文献   

11.
研究了一种适用于非动力车辆的非摩擦制动技术--旋转型永磁涡流技术.根据涡流制动原理,以CRH2拖车转向架为对象,设计了旋转型永磁涡流制动装置.运用ANSYS软件着重进行了旋转型水磁涡流制动装置磁场的瞬态分析,得到在不同速度下感应盘所能提供的制动功率.最后从制动装置的永磁体磁极埘数、磁极周向距离、极片厚度、空隙宽度等方而...  相似文献   

12.
以试验用线性涡流制动电磁铁为研究对象,从能量转化角度推导涡流制动力的计算式,建立简化的二维静态电磁场模型,并借助于有限元分析软件进行计算,得出励磁电流、工作气隙和运动速度等参数对涡流电磁铁制动力的影响,为涡流制动电磁铁的设计提供参考。  相似文献   

13.
电磁涡流制动是磁浮列车安全紧急状况下的重要保障措施。本文通过解析法建立涡流制动过程感应板的温升模型以及温度对涡流制动力的影响作用模型,并结合具体参数分析温升情况和涡流制动力受影响情况。首先,根据磁路定律推导出涡流制动力与列车速度、励磁电流、气隙、电导率和磁导率之间的数学关系式,并从热平衡方程式出发建立制动过程中感应板的温升模型;再以电导率和磁导率为纽带使涡流制动力与感应板温度相关联,据此对涡流制动力进行温度修正;最后,将温度修正后的涡流制动力与试验得到的结果进行对比,从而验证了模型的有效性。  相似文献   

14.
分析了旋转型永磁涡流制动机的工作原理,并进行了涡流制动机机构设计.在此基础上使用有限元分析软件ANSYS建立了涡流制动机的三维模型,完成了涡流制动机的磁场分析,得出在不同的工作状态下的磁场强度分布规律.这为旋转永磁涡流制动机优化设计及控制方法的确定提供了设计依据.  相似文献   

15.
介绍了城轨车辆车控制动控制方式与架控制动控制方式的结构和控制原理;分析了两种制动控制方式的特点;提出了两种方式制动系统的改进建议。  相似文献   

16.
分析了旋转型永磁涡流制动装置的工作原理,并以地铁车辆为对象设计了一种涡流制动装置的结构。利用ANSYS分析软件对其磁场分布进行分析,得到磁通密度的变化规律。以电磁场理论为基础,利用解析法计算了制动装置的制动力矩。为旋转型涡流制动装置的设计、优化与控制方法等提供了一定的依据。  相似文献   

17.
分析了在高速动车组制动系统中增加线性涡流制动后,涡流制动力和空气制动力的分配原则。接着讨论了基于试验数据建立钢轨温升和闸片磨耗数学模型的方法。基于经验公式以减少钢轨温升和减少闸片磨耗为目标,提出一种分配涡流制动力和空气制动力的优化控制策略。通过优化计算,给出了涡流制动力和空气制动力的分配关系。  相似文献   

18.
针对高速磁浮列车涡流制动的特点,采用了跟踪理想制动曲线的控制策略,并利用模糊控制理论设计了涡流制动等级控制器,通过对紧急制动过程中列车位置的闭环控制,实现列车准确停靠目标停车区.最后在simulink中对制动过程进行了仿真试验,结果表明上述控制策略和控制器具有较强的鲁棒性,达到了预期目的.  相似文献   

19.
旋转涡流制动装置性能直接影响列车运行安全,基于旋转涡流制动装置动作时电磁场涡旋源密度的变化,从提高其安全性和可靠性入手,通过调整旋转涡流制动装置的气隙大小、转盘厚度、铁心磁导率、转盘磁导率、转盘电导率、不同电流和磁极排布方式等主要结构参数,并进行仿真和试验,可以达到提高制动力矩、减轻重量的目的。  相似文献   

20.
介绍了第三轨受流器的发展现状和受流器结构,重点进行了受流器受力和弱连接的分析计算,介绍了绝缘架、电缆和上下止挡的设计过程,根据该理论完成受流器的研制和试验。试验结果表明:试验和理论分析是一致的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号