首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In urban areas, where road space is limited, it is important to provide efficient public and private transportation systems to maximize person throughput, for example from a signalized intersection. To this end, this research looks at providing bus priority using a dedicated bus lane which is terminated upstream of the intersection, and placing an additional signal at this location, called a pre-signal. Although pre-signals are already implemented in some countries (e.g. UK, Denmark, and Switzerland), an adaptive control algorithm which responds to varying traffic demands has not yet been proposed and analyzed in the literature. This research aims to fill that gap by developing an adaptive control algorithm for pre-signals tailored to real-time private and public transportation demands. The necessary infrastructure to operate an adaptive pre-signal is established, and guidelines for implementation are provided. The relevant parameters regarding the boundary conditions for the adaptive algorithm are first determined, and then quantified for a typical case using a micro-simulation model. It is demonstrated with case studies that, under all considered scenarios, implementing a pre-signal with the proposed adaptive control algorithm will result in the least average person delay at the intersection. The algorithm is expected to function well with a wide range of car demands, bus frequencies, and bus passenger occupancies. Moreover, the algorithm is robust to errors in these input values, so exact information is not required.  相似文献   

2.
In an attempt to provide priority facilities for high occupancy vehicles, many cities have investigated or installed active bus priority signals at selected intersections. This paper describes one such installation at the intersection of Bell Street and Oriel Road in Heidelberg, Victoria, Australia. In particular, it describes the impact of the signals on bus performance levels and on non-priority traffic performance levels. An evaluation is performed taking account of the costs of the installation, the changes in the amount of fuel consumed and the changes in the perceived, budgeted delay of people passing through the intersection. Perceived, budgeted delay is defined so as to take account of the variability of delay and the perception of small delay changes. The evaluation at this site showed that, for various reasons, it was difficult to justify the priority signals at this isolated intersection.The evaluation is then extended to the concept of a route of bus priority signal intersections. A simple model is built to simulate the performance of such a priority route and the evaluation repeated. As a result of using perceived delay as a measure of performance, it is then shown that although the priority intersections along the route may not be individually justifiable, the priority route as a whole may show considerable net benefits. These benefits will occur given that there are greater than a critical number of priority intersections on the route. This critical number will depend on the assumptions made in the priority route model.It is concluded that re-evaluation of bus priority signal intersections along the lines suggested in the paper may yield a number of viable bus priority intersections and bus priority routes which were previously considered to be non-viable.  相似文献   

3.
4.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   

6.
Major emphasis has been placed in recent years on the improvement of the operations of existing transportation facilities, using Transportation Systems Management strategies. Accordingly, preferential treatment of high occupancy vehicles is playing an increasing role in transportation projects. This paper deals with one of these strategies, the priority treatment of buses at signalized intersections. Such treatment is aimed at improving the capacity of intersections. The paper develops an analytical model of delays at signalized intersections under a bus preemption scheme. The analysis is presented for the simplest case, i.e., two intersecting one-way streets. The results suggests that the benefits of bus preemption can be increased by properly adjusting several design parameters such as cycle and phase duration of the preempted phases as well as the non-preempted parameters. The model outlined in this paper is applicable to any situation in which stochastic variation is introduced into the signal cycle as well as to bus preemption. Consequently, other potential applications of the model include the design/analysis of traffic actuated signals, and pedestrian actuated signals.  相似文献   

7.
Upon having loaded and unloaded their passengers, buses are often free to exit a multi-berth bus stop without delay. A bus need not wait to perform this exit maneuver, even if it requires circumventing one or more other buses that are still dwelling in the stop’s downstream berths. Yet, many jurisdictions impose restrictions on bus entry maneuvers into a stop to limit disruptions to cars and other buses. Buses are typically prohibited from entering a stop whenever this would require maneuvering around other buses still dwelling in upstream berths. An entering bus is instead required to wait in queue until the upstream berths are vacated.Analytical models are formulated to predict how bus discharge flows from busy, multi-berth stops are affected by allowing buses to freely exit, but not freely enter berths. These models apply when: a bus queue is always present at the stop’s entrance; buses depart the entry queue and enter the stop as per the restriction described above; and the stop is isolated from the effects of nearby traffic signals and other bus stops. We find that for these restricted-entry stops, bus-carrying capacities can often be improved by regulating the exit maneuvers as well. This turns out to be particularly true when the stop’s number of berths is large. Simulations show that these findings still hold when a stop is only moderately busy with entry queues that persist for much, but not all of the time. The simulations also indicate that removing any restrictions on bus exit maneuvers is almost always productive when stops are not busy, such that short entry queues form only on occasion, and only for short periods. We argue why certain simple policies for regulating exit maneuvers would likely enhance bus-stop discharge flows.  相似文献   

8.
9.
In uncontrolled bus systems, buses tend to bunch due to the stochastic nature of traffic flows and passenger demand at bus stops. Although schedules and priori target methods introduce slack time to delay buses at control points to maintain constant headways between successive buses, too much slack required delay passengers on-board. In addition, these methods focus on regular headways and do not consider the rates of convergence of headways after disturbances. We propose a self-adaptive control scheme to equalize the headways of buses with little slack in a single line automatically. The proposed method only requires the information from the current bus at the control point and both its leading and following buses. This elegant method is shown to regulate headways faster than existing methods. In addition, compared to previous self-equalizing methods, the proposed method can improve the travel time of buses by about 12%, while keeping the waiting time of passengers almost the same.  相似文献   

10.
This paper investigates the combination effects of queue jump lanes (QJLs) on signalised arterials to establish if a multiplier effect exists, that is, the benefit from providing QJLs at multiple intersections is higher than the sum of benefits from providing them individually at each of those intersections. To explore the combination effects on bus delay and total person delay, a delay estimation model is developed using kinematic wave theory, kinematic equations and Monte Carlo simulation. In addition, to investigate the combination effects in offset settings optimised for bus delay or total person delay, offset optimisation models are proposed. Validation results using traffic micro‐simulation indicate the effectiveness and computational efficiency of the proposed models. Results of a modelling test bed suggest that providing QJLs at multiple intersections can create a multiplier effect on one‐directional bus delay savings with signal offsets that provide bus progression. Furthermore, optimising offsets to minimise bus delay tends to create a multiplier effect on one‐directional bus delay savings, particularly when variations in dwell times are not high. The reason for the multiplier effect may be that providing QJLs reduces variations in bus travel times, which makes signal coordination for buses perform more effectively. From a policy perspective, the existence of a multiplier effect suggests that a corridor‐wide scale implementation of QJLs has considerable merit. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A separate left-turn phase wastes the capacity of intersection, because all the lanes on the approach are not fully utilized during either the left-turn or through green phase. Under the phase swap sorting strategy (Xuan, 2011), different types of movements can be reorganized by a pre-signal so that all the lanes in the sorting area can be used to discharge vehicles during their green phases. Thus the capacity is improved significantly. In fact, when a pre-signal is installed upstream of the intersection signal (also named main signal), the two signals will have a great impact on not only the capacity, but other traffic performances, such as delays, queue formations, maximum queue length, residual queue, and spillback, etc., which are very important performance factors for the design and application of the phase swap sorting strategy. In order to more fully quantify and characterize the performance of the phase swap sorting strategy, a three-dimensional Markov queueing model is presented. Two levels of performance evaluation indices are formulated using the matrix analytic techniques. All these indices can be used to establish a more comprehensive analytical framework to evaluate the use of the phase swap sorting strategy. Model validation shows that the proposed model can provide a reliable performance analysis for the phase swap sorting strategy under various different conditions. In addition, in order to intuitively illustrate the effects of various factors on the performance of the phase swap sorting strategy, a series of numerical experiments is conducted.  相似文献   

12.
Transit signal priority (TSP) may be combined with road-space priority (RSP) measures to increase its effectiveness. Previous studies have investigated the combination of TSP and RSP measures, such as TSP with dedicated bus lanes (DBLs) and TSP with queue jump lanes (QJLs). However, in these studies, combined effects are usually not compared with separate effects of each measure. In addition, there is no comprehensive study dedicated to understanding combined effects of TSP and RSP measures. It remains unclear whether combining TSP and RSP measures creates an additive effect where the combined effect of TSP and RSP measures is equal to the sum of their separate effects. The existence of such an additive effect would suggest considerable benefits from combining TSP and RSP measures. This paper explores combined effects of TSP and RSP measures, including TSP with DBLs and TSP with QJLs. Analytical results based on time-space diagrams indicate that at an intersection level, the combined effect on bus delay savings is smaller than the additive effect if there is no nearside bus stop and the traffic condition in the base case is under-saturated or near-saturated. With a near-side bus stop, the combined effect on bus delay savings at an intersection level can be better than the additive effect (or over-additive effect), depending on dwell time, distance from the bus stop to the stop line, traffic demand, and cycle length. In addition, analytical results suggest that at an arterial level, the combined effect on bus delay savings can be the over-additive effect with suitable signal offsets. These results are confirmed by a micro-simulation case study. Combined effects on arterial and side-street traffic delays are also discussed.  相似文献   

13.
NETSIM is a powerful microscopic simulation model and has been applied to numerous traffic studies. However, it appears that there are few attempts to use it to study bus operations. One of the possible reasons may be the difficulty in modeling some of the unique characteristics in bus operations. A similar challenge was faced when a recent evaluation on bus operations involving priority signals (B‐signals) was undertaken in Singapore. This paper describes the difficulties faced when NETSIM was applied in modeling bus priority signals and the techniques adopted to overcome them. This study shows that, by incorporating innovative techniques, NETSIM can be effectively used to model bus operations along with other traffic in a network.  相似文献   

14.
Recent research has studied the existence and the properties of a macroscopic fundamental diagram (MFD) for large urban networks. The MFD should not be universally expected as high scatter or hysteresis might appear for some type of networks, like heterogeneous networks or freeways. In this paper, we investigate if aggregated relationships can describe the performance of urban bi-modal networks with buses and cars sharing the same road infrastructure and identify how this performance is influenced by the interactions between modes and the effect of bus stops. Based on simulation data, we develop a three-dimensional vehicle MFD (3D-vMFD) relating the accumulation of cars and buses, and the total circulating vehicle flow in the network. This relation experiences low scatter and can be approximated by an exponential-family function. We also propose a parsimonious model to estimate a three-dimensional passenger MFD (3D-pMFD), which provides a different perspective of the flow characteristics in bi-modal networks, by considering that buses carry more passengers. We also show that a constant Bus–Car Unit (BCU) equivalent value cannot describe the influence of buses in the system as congestion develops. We then integrate a partitioning algorithm to cluster the network into a small number of regions with similar mode composition and level of congestion. Our results show that partitioning unveils important traffic properties of flow heterogeneity in the studied network. Interactions between buses and cars are different in the partitioned regions due to higher density of buses. Building on these results, various traffic management strategies in bi-modal multi-region urban networks can then be integrated, such as redistribution of urban space among different modes, perimeter signal control with preferential treatment of buses and bus priority.  相似文献   

15.
A significant portion of the 200,000 people working in Hong Kong’s central business district (CBD) relies on buses as their primary means of transport. During peak hours, nearly a thousand double-decker buses pour into a tiny area of 150 ha. This causes traffic congestion and air pollution. Moreover, given that the flow is uni-directional (into the CBD in the morning and out of the CBD in the afternoon), the occupancy of buses in the CBD is actually low.In this paper, we propose to reduce traffic congestion and to increase bus occupancy by merging bus routes. We describe the peculiar situation of the CBD in Hong Kong and explain the necessary conditions for the possible success of merging routes. Our analysis shows that merging will lead to an overall benefit for all parties, including government, bus operators, and passengers. The actual merging decisions, which routes to merge and at what frequencies buses should run, are determined by a mathematical model. The model also shows quantitatively the benefits of merging routes and the impacts of other factors. The procedure that we follow and the model that we adopt can be applied to other CBD.  相似文献   

16.
The location of bus garages is a complex issue that has received recent attention in the literature. Given a bus system, the number of bus garages and their locations depend on garage cost, deadheading cost and environmental impacts. An approximate analytical model is used to determine the number of bus garages that minimizes the above costs. The concept of a slowly varying density of bus-route origins (hence deadheads) per unit area is used to model deadheading costs. The increased deadheading caused by breakdowns and accidents is also considered. The garage cost is modeled as a function of the number of buses stored. A closed-form solution is obtained for the optimal density of garages, when the garage cost function is linear. The actual locations of garages and the allocations of buses to the garages are found using a discrete space location-allocation model formulated so as to consider the environmental impact associated with buses deadheading through populated neighborhoods.  相似文献   

17.
Time of day partition of bus operating hours is a prerequisite of bus schedule design. Reasonable partition plan is essential to improve the punctuality and level of service. In most mega cities, bus vehicles have been equipped with global positioning system (GPS) devices, which is convenient for transit agency to monitor bus operations. In this paper, a new algorithm is developed based on GPS data to partition bus operating hours into time of day intervals. Firstly, the impacts of passenger demand and network traffic state on bus operational performance are analyzed. Then bus dwell time at stops and inter-stop travel time, which can be attained based on GPS data, are selected as partition indexes. For buses clustered in the same time-of-day interval, threshold values of differences in dwell time at stops and inter-stop travel time are determined. The buses in the same time-of-day interval should have adjacent dispatching numbers, which is set as a constraint. Consequently, a partition algorithm with three steps is developed. Finally, a bus route in Suzhou China is taken as an example to validate the algorithm. Three partition schemes are given by setting different threshold values for the two partition indexes. The present scheme in practice is compared with the three proposed schemes. To balance the number of ToD intervals and partition precision, a Benefit Evaluation Index is proposed, for a better time-of-day interval plan.  相似文献   

18.
In this paper, a person-capacity-based optimization method for the integrated design of lane markings, exclusive bus lanes, and passive bus priority signal settings for isolated intersections is developed. Two traffic modes, passenger cars and buses, have been considered in a unified framework. Person capacity maximization has been used as an objective for the integrated optimization method. This problem has been formulated as a Binary Mixed Integer Linear Program (BMILP) that can be solved by a standard branch-and-bound routine. Variables including, allocation of lanes for different passenger car movements (e.g., left turn lanes or right turn lanes), exclusive bus lanes, and passive bus priority signal timings can be optimized simultaneously by the proposed model. A set of constraints have been set up to ensure feasibility and safety of the resulting optimal lane markings and signal settings. Numerical examples and simulation results have been provided to demonstrate the effectiveness of the proposed person-capacity-based optimization method. The results of extensive sensitivity analyses of the bus ratio, bus occupancy, and maximum degree of saturation of exclusive bus lanes have been presented to show the performance and applicable domain of the proposed model under different composition of inputs.  相似文献   

19.
This study calculates the natural resource use of road transport for different road categories and for different vehicle types. Material inputs per service are determined as the life cycle wide consumption of materials by the road and vehicles, and set against person-kilometres and ton-kilometres transported. If the material input of the infrastructure is allocated to the users according to traffic volume, the material input per service values for abiotic resources and for water are much higher for cars than for bus traffic. The material inputs per service unit for air is significantly lower for buses than for cars. For bicycles, abiotic natural resource consumption is between that for cars and buses, while water consumption is in most instances the highest and air consumption the lowest for the modes studied. The material input per service values for the full trailer are significantly lower than for other goods vehicles. The material inputs per service value for air is significantly higher in the case of vans. If the allocation of road infrastructure use is done by gross vehicle weight, the material input per service values for abiotic resources and water of buses and heavy lorries rise.  相似文献   

20.
This paper proposes a new dynamic bus control strategy aimed at reducing the negative effects of time-headway variations on route performance, based on real-time bus tracking data at stops. In routes with high demand, any delay of a single vehicle ends up causing an unstable motion of buses and producing the bus bunching phenomena. This strategy controls the cruising speed of buses and considers the extension of the green phase of traffic lights at intersections, when a bus is significantly delayed. The performance of this strategy will be compared to the current static operation technique based on the provision of slack times at holding points. An operational model is presented in order to estimate the effects of each controlling strategy, taking into account the vehicle capacity constraint. Control strategies are assessed in terms of passenger total travel time, operating cost as well as on the coefficient of headway variation. The effects of controlling strategies are tested in an idealized bus route under different operational settings and in the bus route of highest demand in Barcelona by simulation. The results show that the proposed dynamic controlling strategy reduces total system cost (user and agency) by 15–40% as well as the coefficient of headway variation 53–78% regarding the uncontrolled case, providing a bus performance similar to the expected when time disturbance is not presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号