共查询到20条相似文献,搜索用时 15 毫秒
1.
Kien Doan Satish Ukkusuri Lanshan Han 《Transportation Research Part B: Methodological》2011,45(9):1483-1500
In this paper, we study the pricing strategies in the discrete time single bottleneck model with general heterogeneous commuters. We first prove that in the system optimal assignment, the queue time must be zero for all the departures. Based on this result, the system optimal problem is formulated as a linear program. The solution existence and uniqueness are discussed. Applying linear programming duality, we then prove that the optimal dual variable values provide an optimal toll with which the system optimal solution is also an equilibrium solution. Extensive computational results are reported to demonstrate the insights gained from the formulations in this paper. These results confirm that a system optimal equilibrium can be found using the proposed approach. 相似文献
2.
An on‐street parking maneuver can often start a temporary bottleneck, leading to additional delay endured by the following vehicles. If the maneuver occurs near a signalized intersection, the service rate of the intersection might be reduced. In this paper, a model is built to analyze the effects of parking maneuvers on the intersection service rate. Based on the hydrodynamic theory of traffic flow, the perturbation caused by the parking maneuver is analyzed. Using dimensional analysis, we illustrate the relation between the background conditions, the distance from the parking area to the intersection, and the intersection service rate. Based on this relation, one can compute the service rate reduction caused by existing on‐street parking areas. A minimum distance between the parking area and the intersection to avoid such reduction can be accordingly found. Numerical examples based on empirical data from the city of Zurich, Switzerland, are provided to illustrate the practical applications. Although the analysis is based on streets with a single lane per direction, the findings can provide some insights regarding different situations. We hope such findings can be used as a basis for developing on‐street parking design guidelines. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Oversaturation has become a severe problem for urban intersections, especially the bottleneck intersections that cause queue spillover and network gridlock. Further improvement of oversaturated arterial traffic using traditional mitigation strategies, which aim to improve intersection capacity by merely adjusting signal control parameters, becomes challenging since exiting strategies may (or already) have reached their “theoretical” limits of optimum. Under such circumstance, several novel unconventional intersection designs, including the well-recognized continuous flow intersection (CFI) design, are originated to improve the capacity at bottleneck intersections. However, the requirement of installing extra sub-intersections in a CFI design would increase vehicular stops and, more critically, is unacceptable in tight urban areas with closed spaced intersections. To address these issues, this research proposes a simplified continuous flow intersection (called CFI-Lite) design that is ideal for arterials with short links. It benefits from the CFI concept to enable simultaneous move of left-turn and through traffic at bottleneck intersections, but does not need installation of sub-intersections. Instead, the upstream intersection is utilized to allocate left-turn traffic to the displaced left-turn lane. It is found that the CFI-Lite design performs superiorly to the conventional design and regular CFI design in terms of bottleneck capacity. Pareto capacity improvement for every traffic stream in an arterial system can be achieved under effortless conditions. Case study using data collected at Foothill Blvd in Los Angeles, CA, shows that the new design is beneficial in more than 90% of the 408 studied cycles. The testing also shows that the average improvements of green bandwidths for the synchronized phases are significant. 相似文献
4.
Reversible traffic operations have become an increasingly popular strategy for mitigating traffic congestion associated with the directionally unbalanced traffic flows that are a routine part of peak commute periods, planned special events, and emergency evacuations. It is interesting that despite its widespread and long‐term use, relatively little is known about the operational characteristics of this form of operation. For example, the capacity of a reversed lane has been estimated by some to be equal to that of a normal lane while others have theorized it to be half of this value. Without accurate estimates of reversible lane performance it is not possible to confidently gauge the benefits of reversible roadways or model them using traffic simulation. This paper presents the results of a study to measure and evaluate the speed and flow characteristics of reverse‐flow traffic streams by comparing them under various operating conditions and locations. It was found that, contrary to some opinions, the flow characteristics of reverse‐flowing lanes were generally similar to normally flowing lanes under a variety of traffic volume, time‐of‐day, location, and type‐of‐use conditions. The study also revealed that drivers will readily use reversible lanes without diminished operating speeds, particularly as volumes increase. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
The classical derivation of a traffic stream model (e.g. speed/concentration relation) from the equilibrium solutions of the Prigogine–Herman kinetic equation invokes the nontrivial assumption that the underlying distribution of desired speeds is nonzero for vanishingly small speeds. In this paper we investigate the situation when this assumption does not hold. It is found that the Prigogine–Herman kinetic equation has a one-parameter family of equilibrium solutions, and hence an associated traffic stream model, only for traffic concentrations below some critical value; at higher concentrations there is a two-parameter family of solutions, and hence a continuum of mean velocities for each concentration. This result holds for both constant values of the passing probability and the relaxation time, and for values that depend on concentration in the manner assumed by Prigogine and Herman. It is hypothesized that this result reflects the well-known tendency toward substantial scatter in observational data of traffic flow at high concentrations. 相似文献
6.
A grid based modelling approach akin to cellular automata (CA) is adopted for heterogeneous traffic flow simulation. The road space is divided into a grid of equally sized cells. Moreover, each vehicle type occupies one or more cell as per its size unlike CA traffic flow model where each vehicle is represented by a single cell. Model needs inputs such as vehicle size, its maximum speed, acceleration, deceleration, probability constants, and arrival pattern. The position and speed of the vehicles are assumed to be discrete. The speed of each vehicle changes according to its interactions with other vehicles, following some stochastic rules depending on the circumstances. The model is calibrated and validated using real data and VISSIM. The results indicate that grid based model can reasonably well simulate complex heterogeneous traffic as well as offers higher computational efficiency needed for real time application. 相似文献
7.
As one of the most promising bus priority techniques, the innovative intermittent bus lane (IBL) strategy has drawn more attention in the past few years. In this paper, some improvements on the operation of the IBL strategy are proposed, and two cellular automaton models for a roadway section with two lanes, one with no bus priority and the other with an intermittent bus lane, are built to study the characteristics of urban traffic flow. Computer simulations and analytical models are developed to conduct quantitative research on the influence of IBL on the traffic density distribution, traffic velocity, and traffic capacity of the roadway section. By comparing the average paces in the two cases, this paper proposes a methodology to determine suitable traffic conditions for the IBL strategy implementation. The results indicate that for the designed scenarios, the IBL strategy is effective only when the traffic density is in the range of 25 to 74 pcu/km, which suggests that level of service C is the inflection point for implementing the IBL strategy. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
Carolina Osorio Gunnar Flötteröd 《Transportation Research Part B: Methodological》2011,45(9):1410-1423
We present a dynamic network loading model that yields queue length distributions, accounts for spillbacks, and maintains a differentiable mapping from the dynamic demand on the dynamic queue lengths. The model also captures the spatial correlation of all queues adjacent to a node, and derives their joint distribution. The approach builds upon an existing stationary queueing network model that is based on finite capacity queueing theory. The original model is specified in terms of a set of differentiable equations, which in the new model are carried over to a set of equally smooth difference equations. The physical correctness of the new model is experimentally confirmed in several congestion regimes. A comparison with results predicted by the kinematic wave model (KWM) shows that the new model correctly represents the dynamic build-up, spillback and dissipation of queues. It goes beyond the KWM in that it captures queue lengths and spillbacks probabilistically, which allows for a richer analysis than the deterministic predictions of the KWM. The new model also generates a plausible fundamental diagram, which demonstrates that it captures well the stationary flow/density relationships in both congested and uncongested conditions. 相似文献
9.
Recognizing the increasing popularity of scooters among urban commuters in developing countries and the significant impacts of their dynamic maneuverability on the progression of mixed traffic, this study presents a simulation-based signal optimization model for arterials experiencing heavy scooter-vehicle flows. The proposed model consists of a macroscopic simulation and a signal optimization module, where the former functions to capture the interactions between scooter and passenger-car flows over the process of discharging, propagation, and formation of intersection queues. The latter offers a specially-designed algorithm to search for the optimal signal plan and arterial offsets, based on the complex departure and arrival patterns of mixed flows estimated with the simulation module. To account for scooters’ unique parallel moving and queue patterns in a travel lane, the proposed signal module has adopted the sub-lane concept in estimating the mixed-flow queue distribution across lanes and their discharging flow rates. The results of extensive experimental analyses with various mixed-flow scenarios confirm that the proposed model offers the potential for signal design for arterials plagued by heavy scooter-vehicle mixed flows. 相似文献
10.
高速公路空间平均速度是高速公路交通流动态模型中的重要参数。文章从高速公路交通流的宏观特性和动态特性出发,采用离散计算方法得到空间平均速度的数学公式。 相似文献
11.
This study aims to develop work zone speed‐flow and capacity models, which incorporate work zone configuration factors including the number of work zones, geometrical alignment, work zone speed limit, and work zone length. On the basis of the traffic data from six work zone sites with various work zone configurations, two nonlinear traffic speed and flow models including work zone configuration factors are developed for the uncongested and congested traffic conditions, respectively. A work zone capacity model is proposed on the basis of the two models. The three models can further be used to examine the effects of work zone configuration factors on the speed‐flow relationship and capacity at work zones. Results show that traffic speed, traffic flow, and work zone capacity increase with the posted speed limit. Traffic speed under uncongested conditions decreases with the geometric alignment, the number of work zones, work zone length, and heavy vehicle percentage. Under congested conditions, the increase of the number of work zones is found to exhibit a larger negative impact on the traffic flow than the increase of geometric alignment. The number of work zones is also found to have the largest negative impacts on work zone capacity, followed by the geometric alignment. Short work zone length exhibits a relatively minor contribution to increasing work zone capacity. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
AbstractRoad traffic congestion is not yet reflected in current market prices within the sector and has given rise to a number of instruments to mitigate the resulting negative impacts. The focus of this paper is the tradable credit scheme — an incentive-based economic measure — in order to address traffic congestion. The research questions are (1) whether the state-of-the-art in the literature suggests that tradable credit schemes could be feasibly introduced to mitigate congestion, and (2) whether a tradable credit scheme could have advantages over other instruments. A brief outline of congestion mitigation approaches is provided first to position this type of economic instrument with respect to other measures. The broad issues in the design of a tradable credit scheme are then presented. Most research to date has focused on the use of tradable credits to manage related pollution, but it is clear there is potential to design a scheme for traffic congestion management. To date this is a novel review of tradable credit schemes that has focused specifically on their role in road traffic congestion management. 相似文献
13.
This paper presents the design and evaluation process of a self-learning system for local ramp metering control. This system is developed on the basis of reinforcement learning (RL) and can deal with the problem of on-ramp queue management through a continuous learning process. A general framework of the system design including the definition of RL elements and an algorithm that can accomplish the learning process is proposed. Simulation tests are carried out to evaluate the performance of the new system. In terms of the total time spent by road users, the new system can achieve a 30% reduction from the situation of no control, a result which is competitive with the widely accepted algorithm ALINEA. Meanwhile, simulation results show that the new system can keep on-ramp queues strictly under a series of pre-specified constraints, which proves its capability of managing on-ramp queues. 相似文献
14.
《Transportation Research Part C: Emerging Technologies》2010,18(4):554-567
It is essential for local traffic jurisdictions to systematically spot freeway bottlenecks and proactively deploy appropriate congestion mitigation strategies. However, diagnostic results may be influenced by unreliable measurements, analysts’ subjective knowledge and day-to-day traffic pattern variations. In order to suitably address these uncertainties and imprecise data, this study proposes a fuzzy-logic-based approach for bottleneck severity diagnosis in urban sensor networks. A dynamic bottleneck identification model is first proposed to identify bottleneck locations, and a fuzzy inference approach is then proposed to systematically diagnose the severities of the identified recurring and non-recurring bottlenecks by incorporating expert knowledge of local traffic conditions. Sample data over a 1-month period on an urban freeway in Northern Virginia was used as a case study for the analysis. The results reveal that the proposed approach can reasonably determine bottleneck severities and critical links, accounting for both spatial and temporal factors in a sensor network. 相似文献
15.
In a variety of applications of traffic flow, including traffic simulation, real-time estimation and prediction, one requires a probabilistic model of traffic flow. The usual approach to constructing such models involves the addition of random noise terms to deterministic equations, which could lead to negative traffic densities and mean dynamics that are inconsistent with the original deterministic dynamics. This paper offers a new stochastic model of traffic flow that addresses these issues. The source of randomness in the proposed model is the uncertainty inherent in driver gap choice, which is represented by random state dependent vehicle time headways. A wide range of time headway distributions is allowed. From the random time headways, counting processes are defined, which represent cumulative flows across cell boundaries in a discrete space and continuous time conservation framework. We show that our construction implicitly ensures non-negativity of traffic densities and that the fluid limit of the stochastic model is consistent with cell transmission model (CTM) based deterministic dynamics. 相似文献
16.
In this paper, we develop a macro traffic flow model with consideration of varying road conditions. Our analytical and numerical results illustrate that good road condition can enhance the speed and flow of uniform traffic flow whereas bad road condition will reduce the speed and flow. The numerical results also show that good road condition can smooth shock wave and improve the stability of traffic flow whereas bad road condition will lead to steeper shock wave and reduce the stability of traffic flow. Our results are also qualitatively accordant with empirical results, which implies that the proposed model can qualitatively describe the effects of road conditions on traffic flow. These results can guide traffic engineers to improve the road quality in traffic engineering. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
The predictions of a well-calibrated traffic simulation model are much more valid if made for various conditions. Variation in traffic can arise due to many factors such as time of day, work zones and weather. Calibration of traffic simulation models for traffic conditions requires larger datasets to capture the stochasticity in traffic conditions. In this study we use datasets spanning large time periods to incorporate variability in traffic flow, speed for various time periods. However, large data poses a challenge in terms of computational effort. With the increase in number of stochastic factors, the numerical methods suffer from the curse of dimensionality. In this study, we propose a novel methodology to address the computational complexity due to the need for the calibration of simulation models under highly stochastic traffic conditions. This methodology is based on sparse grid stochastic collocation, which, treats each stochastic factor as a different dimension and uses a limited number of points where simulation and calibration are performed. A computationally efficient interpolant is constructed to generate the full distribution of the simulated flow output. We use real-world examples to calibrate for different times of day and conditions and show that this methodology is much more efficient that the traditional Monte Carlo-type sampling. We validate the model using a hold out dataset and also show the drawback of using limited data for the calibration of a macroscopic simulation model. We also discuss the drawbacks of the predictive ability of a single calibrated model for all the conditions. 相似文献
18.
19.
Heterogeneous traffic flow, characterized by a free inter-lane exchange, has become an important issue in addressing congestion in urban areas. It is of particular interest in many developing countries, that experience a strong increase in motorcycle use. New approaches to the heterogeneous non-lane-based flow have been proposed. However insufficient empirical verification has been made to estimate vehicle interaction, that is necessary for an accurate representation of mixed-flow conditions. In this paper, we focus on the porous flow approach to capture the complex interactions. The parameters from this approach are estimated from empirical observations. Video data was recorded and processed to capture vehicle interactions at a number of road sections in Surabaya City, Indonesia. The specific behavior of each vehicle in the traffic flow was captured by developing the pore size–density distributions, analyzing the class-specific critical pore sizes, and producing the class specific speed–density and flow–density diagrams. The results reveal how critical pore sizes are based on pore size–density distributions, the flow diagram for each vehicle class, and how traffic flow relationships for motorcyclists and the other vehicles exhibit significant differences. It is concluded that the proposed approach can represent the specific behavior of the motorcyclist in heterogeneous traffic flow, in both the situations of with- and without an exclusive lane for motorcycles, can clarify motorcyclist’s behavior in terms of passenger car unit of motorcycle, and can therefore support policy making on the improvement of urban transport. 相似文献
20.
AbstractCar-following (CF) models are fundamental in the replication of traffic flow and thus they have received considerable attention. This attention needs to be reflected upon at particular points in time. CF models are in a continuous state of improvement due to their significant role in traffic micro-simulations, intelligent transportation systems and safety engineering models. This paper presents a review of existing CF models. It classifies them into classic and artificial intelligence models. It discusses the capability of the models and potential limitations that need to be considered in their improvement. This paper also reviews the studies investigating the impacts of heavy vehicles in traffic stream and on CF behaviour. The findings of the study provide promising directions for future research and suggest revisiting the existing models to accommodate different behaviours of drivers in heterogeneous traffic, in particular, heavy vehicles in traffic. 相似文献