首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
结合曲线梁桥实际工程,运用大型通用有限元分析软件ANSYS提供的参数化设计语言,对一座跨径布置为3×30 m,桥宽为12 m的预应力混凝土曲线梁桥在不同曲率半径R以及边中跨径比L1/L2条件下进行了受力性能分析。研究结果表明:随着曲率半径的减小,曲线桥会在支墩主梁处产生扭矩值,且不断增大,另外建议当R/L≥10倍时可以近似按照直线桥进行受力分析;设置合理的边中跨径比不仅可以平衡边跨与中跨的内力分布,亦能有效地调节曲线梁桥支墩处的扭矩分布。  相似文献   

2.
基于有限元法,建立了3个不同坡顶距的边坡数值模型,通过在条形基础上施加逐渐增加的附加荷载,得到了边坡的位移、应变响应,探讨了边坡的破坏形式,分析了边坡不同高程处测线最大水平应变与边坡稳定性系数的关系。研究表明:随着基础荷载的逐渐增加,土体的水平应变也逐渐增加,但最大水平应变和最大水平位移出现位置并非出现于滑动面上,但通过水平应变分布可以观察土体的局部应力状态;边坡稳定性系数与测线最大水平应变之间存在一定的拟合关系,当坡顶距较小时,可采用对数函数或幂函数进行拟合,当坡顶距较大时,可用线性函数进行拟合;综合比较不同坡顶距的边坡模型中不同测线最大水平应变与稳定性系数的相关系数,发现最佳监测区域在边坡的中上部。  相似文献   

3.
根据测量学原理和误差传播定律,分析了全站仪自由设站对边量测(RDM)法和三维坐标(3D)量测法,建立了2种量测法的隧道变形精度分析模型,利用中误差评价隧道变形量测精度,推导了2种方法量测隧道变形的中误差计算公式,并以某三车道公路隧道为例,对2种方法的量测精度进行了对比和验证;RDM法通过三角高程测量原理和三角余弦定理得出任意点之间的水平距离、高差和斜距,根据任意测点之间的三角几何关系得到隧道变形;3D量测法从任意观测点观测若干已知点的方向和距离,通过坐标变换计算各测点坐标,根据各测点坐标得到隧道变形。分析结果表明:采用RDM法和3D量测法量测隧道拱顶下沉的精度评价公式相同,而量测隧道水平收敛的精度评价公式不同,RDM法的精度优于3D量测法,且随着全站仪到量测断面距离的增加,差值逐渐增大,当距离为100 m时,两者精度差值已增大至0.43 mm;在三车道公路隧道中,当距离为40~60m时,2种方法量测隧道水平收敛的精度均为最高,RDM法可达0.61~0.68mm,3D量测法可达0.78~0.84mm;RDM法和3D量测法量测的隧道拱顶下沉曲线平滑、圆顺,拟合度都大于0.95,而在量测隧道净空收敛方面,RDM法的曲线拟合度大于0.9,3D量测法的曲线拟合度小于0.9,因此,RDM法量测精度优于3D量测法。  相似文献   

4.
针对临近道路施工会通过改变在役桥墩桩基础桩-土界面的接触应力分布从而影响在役桥墩的墩顶位移特征这一问题,以重庆轨道交通3号线某在役桥墩为工程背景,利用有限元软件ABAQUS建立了描述临界道路建设过程中地基-基础-桥墩相互作用的三维数值模型,基于此模型分别研究了道路开挖、铺筑及运营对墩顶水平、竖向位移的影响.研究结果表明:路基开挖后,随着开挖深度(H)增加,墩顶水平位移会不断增大,墩顶竖直沉降则会不断减小,随着道路至桥墩边缘距离(L)的增加,墩顶水平位移不断减小,竖直沉降反而不断增大;道路铺筑后引起的桥墩顶部水平位移较路基开挖有减小趋势,竖向位移却有增大趋势;新建道路在后期运营中,交通荷载引起的桥墩顶部水平位移相对较小,而竖直沉降较道路施工引起的位移明显增大;在得出的墩顶水平位移随开挖深度的变化曲线中,墩顶水平位移从靠近道路到远离道路的转折点在道路施工中有所变化;在路基开挖中,当开挖深度约为1.8m时,墩顶水平位移方向发生变化;在道路铺筑中,当开挖深度约为2.6 m时,墩顶水平位移方向发生变化;在后期运营中,当开挖深度约为3.1m时,墩顶水平位移方向发生变化.  相似文献   

5.
为了揭示墙体平动和转动模式下黏土非极限被动土压力分布规律,采用自制模型箱,进行了墙体平动和转动模式下黏土非极限土压力试验,研究了墙体变位模式以及墙体位移大小对侧土压力的影响规律细化方法,首先进行了室内试验,得到了黏土的基本物理参数,其次进行了模型箱和测试仪器的固定安装,最后进行了挡土墙平移模式(T模式)、绕墙顶转动模式(RT模式)以及绕墙底转动模式(RB模式)3种模式下的土压力试验. 试验结果表明:T模式下,非极限侧土压力沿墙体深度的增加总体趋势增大,局部会有减小趋势,总体接近线性分布,当土体达到极限破坏时,靠近加载墙体处土体表面形成阶梯状错层;RT模式下,侧土压力随墙体的深度总体接近凹曲线分布,上部侧土压力随深度增加较慢,下部侧土压力随深度增加较快,当土体达到极限破坏时,靠近加载墙体处土体表面产生裂纹,模型箱中部土体表面鼓起;RB模式下,侧土压力随墙体的深度的增加先增大后减小,总体接近凸曲线分布,当土体达到极限破坏时,靠近加载墙体处土体表面形成阶梯状错层,其阶梯状错层范围要小于平动模式工况;三者非极限侧土压力合力随着压缩位移的增大而增大,当压缩位移相同时,RT模式下土压力合力与T模式下土压力合力比值在0.53~0.97之间,RB模式下土压力合力与T模式下土压力合力比值在0.65~0.83之间. 结论中是否有可以量化的数据,参考附件模板修改.   相似文献   

6.
提出了一种基于双目视觉的自治水下机器人(AUV)避障模拟方法.为了模拟AUV在复杂海洋环境中对未知环境的感知以及避障过程,设计了AUV避障模拟实验系统.介绍了AUV避障模拟平台的总体结构和参数设计.应用双目立体视觉系统模拟水下声呐,并建立了模拟前视声呐的模型.通过对双目视觉系统进行标定,确定校正系统的内参数和外参数,使校正后的视觉系统建立了图像输入和输出的映射关系,并采用视差法获取被测目标的深度信息.对于目标的避障问题,提出了一种基于速度势场的避障方法,利用相对速度的极坐标,建立由水平面速度势场和垂直面速度势场组成的三维速度势场.当机器人利用视觉传感器获取到障碍物信息时,通过调整速度矢量实现动态避障.模拟实验证明了AUV的避障模拟方法是可行和有效的.  相似文献   

7.
为探讨砌体结构的破坏特性及延性影响,设计和制作1∶2缩尺结构模型进行了拟静力试验,研究了多次往复循环静力作用下结构的受力特点、构造柱受力钢筋应变发展及骨架曲线特征;采用数值分析技术对模型试验结果进行了对比,验证了数值计算参数设置的合理性;定量分析了结构楼层数、楼层内构造柱数量、楼层内墙体数量以及楼层高度等变化与位移延性系数变化之间的关系,给出了定量的函数表达式.研究结果表明:构造柱-圈梁能够与墙体发生相同的变形机制,能共同约束和限制墙体变形及裂缝发展,结构展现明显的延性特征;增加墙体数量可提高砌体结构抗侧承载力,但不能增大结构位移延性;增加构造柱数量可显著增大结构位移延性,当构造柱含量增加1倍时,位移延性系数可增加3倍.  相似文献   

8.
国际法体系建立在条约必须信守原则基础之上,国家,或者更准确的说在外交谈判会议上代表各自利益的政府官员们都应当为自己的条约承诺负责。没有国家会被迫接受条约承诺,也没有国家会加入一个违背自己意愿的国际组织。如果一个国家通过国内法所规定的审批程序成为一个条约的缔约方,那么它必须善意履行条约义务。然而,国际条约关系的根本属性是国际政治关系,没有哪个条约所签订时的地缘政治环境会亘古不变,当时代变迁、国际环境改变,旧的条约体系没有随之更迭和修订以致对缔约国产生过分的负累时,国际法将引导条约缔约方进行重新谈判甚至在没有必要继续停留在条约内时合法、优雅地退出条约。当《维也纳条约法公约》极具创新性的规定了条约退出问题之后,过去学者们脑海中要么遵守要么破坏条约的二元思维模式被打破。本文拟从国际实践和国内法律规定两个维度来观察条约退出这一国际法实践中比较特殊的法律现象,并以此论证国际条约退出的正当性。  相似文献   

9.
为了研究高速列车脱轨撞击盾构隧道时接头螺栓参数对螺栓失效和管片的影响. 基于ABAQUS有限元软件,建立了盾构隧道管片衬砌分块拼装式模型,利用时速200 km/h列车12.5° 斜向撞击荷载曲线,通过设置接触面单元和具有抗拉、抗剪、抗弯3种刚度组合的连接单元,近似模拟了盾构隧道接缝混凝土接触效应和螺栓连接效应,开展了不同螺栓直径和不同螺栓强度级别下管片接头螺栓的失效研究. 研究结果表明:在列车撞击荷载作用下,接头螺栓主要发生拉伸失效和剪切失效两种失效状态,失效后螺栓拉力和剪力降低为0,并且螺栓失效一般是相对列车行进方向相继出现的;拉伸失效通常出现在被撞块后端纵向螺栓,而被撞块环向螺栓和前端纵向螺栓一般发生剪切失效;各螺栓发生失效的时间随着接头螺栓强度级别的提高或螺栓直径的增大有所延后;不同螺栓参数下被撞块管片位移极大值均在6 cm左右,提高接头螺栓的强度级别和增大螺栓直径,将减小被撞块管片最终位移较大值区域面积以及最终位移极大值的数值,但管片最终位移极大值数值的减幅在10%以内,说明改变螺栓参数无法明显减小管片最终位移.   相似文献   

10.
为探究土岩双元地层中土层力学参数及其空间分布特征对深基坑施工变形规律的影响,采用ABAQUS有限元软件,建立土岩双元地层深基坑三维施工力学模型,考虑土层力学参数及土岩结合面倾斜角等因素,分析多种工况的土岩双元地层深基坑施工诱发变形的规律。研究结果表明:(1)土体的弹性模量越大,桩身的侧移就越小,桩身侧移曲线由单调递减变为先增后减的“鱼腹状”,最大侧移点也由桩顶不断下移;(2)土体的黏聚力越大,土体和桩体的侧移就越小;黏聚力在一定的安全范围内对土体的侧移影响较小;(3)土岩结合面结构对支护结构变形有重要影响,其倾斜角度可以改变桩侧所受到的侧向土压力。当土岩结合面斜向抗滑桩身一侧时,侧向土压力会增大,导致桩身位移和土体侧移加大,但土岩结合面对岩层及岩层部位的桩体影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号