首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
白兆宏  程晓达  尹绪超  吴超 《船舶》2011,22(5):27-30
对潜艇结构冲击响应(压力)的分析可以评价结构的抗冲击能力并为提高结构抗冲击性能提供依据。以双层圆柱壳为基础,建立有限元模型。利用仿真算法计算当双层圆柱壳结构在主压载水舱状态改变时,耐压壳与非耐压壳的压力响应,并对压力响应进行了分析。通过数据分析表明:主压载水舱的状态对潜艇主要结构响应有很大影响,尤其是对耐压壳、非耐压壳的压力响应及冲击波过后结构响应的衰减方式、频率都有明显影响。  相似文献   

2.
单/双圆柱壳体结构是潜艇的两种典型结构形式。以单/双壳体潜艇典型结构为研究对象,分别设计初始深水静压强度相当的典型单/双耐压环肋圆柱壳体结构模型,基于MSC/Dytran罚函数接触算法,开展相同撞击强度载荷作用下结构模型耐撞动态响应特性分析,提取撞击后结构模型中耐压壳体结构的稳定变形位移场,作为MSC/Marc静强度求解的初始位移边界条件输入,通过有限元数值方法,对撞击后典型单/双结构耐压壳体结构的剩余强度特性进行比较分析。分析结果表明,当撞击载荷强度较低时,双壳模型的耐压壳体结构剩余强度较大,随着撞击载荷强度的不断增大,单/双壳结构耐压壳体结构的剩余强度将趋于一致,进一步提高撞击载荷强度,单壳体结构的剩余强度将高于双壳体结构。  相似文献   

3.
潜艇外部耐压液舱结构型式研究   总被引:1,自引:0,他引:1  
讨论了潜艇外部耐压液舱可能的结构形式。指出了传统的全实肋板外部耐压液舱、耐压船体壳板应力集中较严重,轴向应力很大。指出了加强液舱南板难以降低耐压船体壳板应力,反过来,加强耐压船体壳板也难以改善液舱壳板的应力状态。指出了液舱壳板加纵骨的全实肋板同心双层圆柱层是一种优良的耐压液舱新型结构型式。  相似文献   

4.
对具有双层壳体结构的潜艇状水下航行体的纵向振动特性进行了研究。采用有限元方法计算了纵向振动湿模态的固有频率和振型,发现该水下航行体内层壳板具有两种典型的纵向总振动振型:“振动节面振型”和“错动块振型”,而外层壳板以局部振动为主。  相似文献   

5.
单双壳体典型结构耐撞特性模型试验研究及仿真分析   总被引:2,自引:0,他引:2  
基于单双壳体典型结构特征,以总重量相近为基础,分别设计单双壳体结构缩比试验模型,针对单壳和有舷间水双壳模型状态,以230kg球形撞击体,初速7.8m/s侧向撞击为载荷工况,开展单双壳体典型结构耐撞特性模型试验研究。通过对撞击后结构模型的损伤状态及相关参量的观测,试验结果显示,单双壳体结构撞击载荷作用下结构的失效及破坏模式存在较大差异;进一步结合高瞬态非线性有限元程序MSC/Dytran对模型试验过程中的结构动态响应特性以及构件吸能分布特性开展深入分析,研究结果显示:不考虑外壳外部附连水影响时,由于舷间水和结构构件分散的影响,双壳结构的撞击载荷过程延长,冲击载荷峰值低于单壳结构,但耐压壳体撞击形变区域相对集中,凸起明显;单壳结构撞击形变影响区域较大,撞击力作用时间短,冲击载荷峰值较高。通过综合分析单双壳结构撞击力历程特征曲线、构件塑性变形能分布规律特性分析,可以认为随着撞击强度的不断增加,单壳结构的剩余强度将趋近于双壳结构耐压壳体。  相似文献   

6.
深水环境下双层圆柱壳结构受撞数值仿真   总被引:2,自引:1,他引:1  
水下运载器一旦受到物体撞击造成破舱进水,后果不堪设想.为了提高水下运载器的结构安全性,选取其典型耐压结构形式--双层圆柱壳结构为研究对象,采用MSC.Dytran非线性瞬态动力学分析程序,分3种撞击环境:流固耦合与深水静压联合作用、单深水静压作用以及单流固耦合作用,对双层圆柱壳结构受物体撞击的损伤过程进行数值仿真.通过对计算结果的对比分析,研究了深水压力及流固耦合作用对受撞结构的损伤变形、撞击过程中的能量转换和撞击力的影响.本文的研究成果,可为水下运载器的碰撞研究及抗撞结构设计提供借鉴.  相似文献   

7.
多层声学覆盖层复合的有限长弹性圆柱壳声辐射特性研究   总被引:2,自引:0,他引:2  
白振国  俞孟萨 《船舶力学》2007,11(5):788-797
针对水下双层圆柱壳内外壳体各表面敷设隔声阻尼层的情况,建立了有限长多层复合加实肋板的双层圆柱壳水下声辐射计算模型.对模型采用模态展开法,系统考虑壳体与隔声层和实肋板耦合,外表面声学覆盖层作用和外部声场耦合,并以状态矢量对应的矩阵形式导出复合壳体辐射声功率的计算表达式.数值计算了隔声阻尼层和外场声学覆盖层层参数,实肋板参数和壳体阻尼对模型辐射声功率的影响.研究结果表明:有实肋板时阻尼层的降噪量最高接近15dB,实肋板的声短路作用限制了隔声阻尼层的降噪效果;双层隔声阻尼层比单层隔声阻尼层降噪效果好3-4dB.外场声学覆盖层受实肋板影响较阻尼层小,其降噪量达10dB左右.  相似文献   

8.
考虑静水压力的加筋圆柱壳体径向碰撞机理研究   总被引:4,自引:1,他引:3  
水下碰撞是水下结构物的主要事故形式之一,而深水静压载荷环境下的碰撞、触礁等问题是深水静压和碰撞联合载荷作用下的结构响应问题,是最为危险的碰撞环境.采用MSC/Dytran大型非线性动力有限元程序,建立数值有限元模型,考虑深水静压和外物撞击的联合作用,进行深水静压环境、无水压力环境下以及不同撞击载荷多工况碰撞环境和撞击历程的数值分析,对加筋圆柱壳体碰撞载荷作用下的变形、失效机理和变形历程进行比较,分析了不同速度、质量撞击物撞击载荷作用下撞击强度、深水压力载荷等对碰撞历程的影响和加筋圆柱壳体深水碰撞环境下的动态响应特性和碰撞机理.结果显示:由于准静压载荷的附连联合作用,撞击形变将不可避免地带来准静压载荷的做功,其能量将直接由结构吸收,从而将导致加筋圆柱壳体结构的防撞能力急剧下降.同时,随着静水压力的增大,撞击初始阶段所产生的小变形将导致圆柱壳体的整体环向失稳,从而导致壳体整体迅速压溃,因此,深水环境下结构碰撞问题的研究主要是结构的初始稳定性问题的研究.圆柱壳体通过横向平台的加强后将有效提高壳体结构的横向失稳临界应力,从而能够明显地改善加筋圆柱壳体结构的径向耐撞能力.  相似文献   

9.
在壳厚方向采用位移和应力插值函数,应用混合分层理论和壳体在流场中所受的流体动压力.推导带有消声瓦的潜艇耐压壳在流场中的动力学方程.采用迭代的方法求出潜艇耐压壳在流场中阻尼振动的解.在不同粘弹性材料弹性模量和厚度下.分别计算了潜艇耐压壳在流场中阻尼振动的一阶固有频率、结构损耗因子和层间横向应力的幅值.结果表明,随粘弹性材料弹性模量的增大,一阶固有频率和结构损耗因子增加,随粘弹性材料层厚度的增大,结构损耗因子增加.一阶固有频率减小.较高的层间法向正应力是造成潜艇消声瓦在流场中低频振动脱落的主要原因.采用较高模量和厚度的牯弹性阻尼材料将有效地降低潜艇耐压壳在流场中阻尼振动的层间应力的幅值.  相似文献   

10.
采用模态展开法建立了水下有限长双层加筋圆柱壳的振动声辐射模型,给出了环肋、实肋板和舷间水的阻抗表达式,分析了实肋板的周向、轴向、径向及弯矩作用力对双层圆柱壳结构振动声辐射的影响,比较了舷间水与实肋板的传递功率,并针对实肋板详细分析了不同作用力的功率传递特征及主要作用频段。结果表明:0.5倍环频以下,双层壳体间功率传递以舷间水为主,0.5倍环频以上,实肋板对声辐射峰值的贡献更为明显;实肋板功率传递的四个分量中,环频以下以切向力和径向力传递为主,环频以上四个分量传递功率量级基本相当,轴向力略低。  相似文献   

11.
Water-filled double-layer structures are typical hull structures. However, the effect of the carried water has often been neglected in previous collision studies. The carried water couples with the hull structure and participates in the energy absorption process, which reduces the collision damage done to the hull structure. This paper focuses on the effects of compressible carried water on the collision characteristics of a hull structure. Therefore, collision experiments with a simplified double-layer structure (water tank) were performed, and the corresponding collision process was simulated with the finite-element method. The two kinds of pressure (a shock wave and pressure disturbance) generated in the carried water when the water tank collides with a striker were investigated. By comparing the dynamic characteristics of empty and completely filled water tanks, it can be observed that the pressure of the carried water can reduce the displacement of the outer plate and change its deformation shape. Furthermore, the effects of pressure on the collision force and displacement of the inner plate were investigated. Finally, the collision characteristics of a typical water-filled side structure are presented as an example.  相似文献   

12.
基于有限元及边界元法,运用有限元计算软件ANSYS和声学软件SYSNOISE,通过对圆柱壳体结构形式(耐压壳板的厚度、肋骨的布置)的改变,分析了结构形式对水下结构辐射噪声的影响,找到了结构型式改变对其结构辐射噪声的影响规律。同时研究了圆柱壳不圆度对结构振动和声辐射的影响,结果表明圆柱壳不圆度的存在,一定程度上加强了水下结构的振动,且壳体截面的不圆度越大,结构的辐射声功率越大。这对降低水下航行体的噪声具有重要研究价值。  相似文献   

13.
  目的  为更好地模拟和分析潜艇舷间多层阵列结构碰撞后的变形损伤特征及能量耗散特点,  方法  选取双壳体潜艇舯部具有代表性的主压载水舱舱段作为研究对象,利用非线性有限元软件ABAQUS,分别对双壳体舷间加装多层阵列结构前后的舱段,从结构变形损伤模式、结构动态响应特性及各构件吸能分布特性等方面开展对比分析。  结果  结果表明,舷间加装多层阵列结构后,耐压壳体受到冲击作用而发生塑性变形吸收的能量相对于防护前减少了75%。  结论  舷间多层阵列结构具有良好的防护特性,可以有效提高舱段结构的耐撞性,使其在遭受碰撞冲击载荷后将耐压壳体的损伤控制在合理范围之内。  相似文献   

14.
撞头形状对环肋圆柱壳水下碰撞特性的影响   总被引:1,自引:0,他引:1  
孙清磊  刘令  吴梵 《船海工程》2012,41(4):98-101,109
静水压力与径向撞击联合作用是环肋圆柱壳所面临的最危险的载荷环境之一。采用MSC.DYT-RAN非线性瞬态有限元软件,对不同静水压力下,环肋圆柱壳受不同形状撞击体撞击的过程进行数值仿真,探讨不同撞头形状对结构变形吸能及碰撞力的影响规律,比较两种静压环境下碰撞结果的差别。分析表明,不同形状的撞头主要通过尖锐程度和接触面积来影响结构的变形及吸能,两种静压影响机理不同。  相似文献   

15.
圆柱壳是海洋工程结构物和潜体中广泛采用的结构单元,为了研究其在物体撞击作用下的响应以及撞击角度对撞击响应的影响,文中采用大型非线性动态响应分析程序MSC.Dytran,分不同撞击角度,对双层圆柱壳结构受射弹撞击过程进行了数值仿真,研究分析了圆柱壳结构的损伤变形、能量吸收及撞击力的变化情况.文中的计算结果对圆柱壳结构物的抗撞击分析研究及合理的结构设计有参考价值.  相似文献   

16.
  目的  为提高无人水下航行器(UUV)、自主式水下航行器(AUV)、空气瓶等外壳防护结构的抗爆抗冲击能力,对水下爆炸和高静水压力载荷下碳纤维增强复合材料(CFRP)圆柱壳的结构响应及其失效模式进行研究。  方法  利用ABAQUS软件和耦合欧拉−拉格朗日法(CEL)方法构建在静水压力和冲击载荷共同作用下CFRP圆柱壳内爆的计算模型,通过与实验结果对比来验证数值模拟方法的有效性,并在此基础上获得CFRP圆柱壳内爆的失效模式和参数化影响。  结果  研究发现,CFRP圆柱壳水下内爆可分为3个阶段:屈曲阶段、壁面接触阶段、失效扩展阶段;减小圆柱壳长径比能提高结构的抗冲击能力,且影响CFRP圆柱壳的失效模式;随着纤维层数的增加,壳结构的静水承载能力和抗冲击能力增长速率增加;增加冲击块速度,壳的壁面界接触和失效扩展越显著,发生的基体断裂更多,且裂纹在圆柱壳长度方向上有明显增大趋势。  结论  所做研究可为水下航行器等结构设计工作提供数据指导,推动复合材料在上述领域中的应用。  相似文献   

17.
针对目前设计部门感兴趣的双层壳体结构中外壳对水下爆炸作用的影响问题,用简单平面波理论对双层壳体结构的外板对冲击波的透射特性进行分析,给出透射冲击波的计算公式,与试验比较吻合良好.并详细介绍相关的双层平板的水下爆炸试验结果,表明双层壳体结构的外壳对水下爆炸作用的影响主要表现在高频部分,冲击波压力约减小20%,结构冲击加速度和应变响应减小约50%以上,内部流体的作用使对整体冲击响应速度略有增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号