首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We consider inferring transit route‐level origin–destination (OD) flows using large amounts of automatic passenger counter (APC) boarding and alighting data based on a statistical formulation. One critical problem is that we need to enumerate the OD flow matrices that are consistent with the APC data for each bus trip to evaluate the model likelihood function. The OD enumeration problem has not been addressed satisfactorily in the literature. Thus, we propose a novel sampler to avoid the need to enumerate OD flow matrices by generating them recursively from the first alighting stop to the last stop of the bus route of interest. A Markov chain Monte Carlo (MCMC) method that incorporates the proposed sampler is developed to simulate the posterior distributions of the OD flows. Numerical investigations on an operational bus route under a realistic OD structure demonstrate the superiority of the proposed MCMC method over an existing MCMC method and a state‐of‐the‐practice method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The primary focus of this research is to develop an approach to capture the effect of travel time information on travelers’ route switching behavior in real-time, based on on-line traffic surveillance data. It also presents a freeway Origin–Destination demand prediction algorithm using an adaptive Kalman Filtering technique, where the effect of travel time information on users’ route diversion behavior has been explicitly modeled using a dynamic, aggregate, route diversion model. The inherent dynamic nature of the traffic flow characteristics is captured using a Kalman Filter modeling framework. Changes in drivers’ perceptions, as well as other randomness in the route diversion behavior, have been modeled using an adaptive, aggregate, dynamic linear model where the model parameters are updated on-line using a Bayesian updating approach. The impact of route diversion on freeway Origin–Destination demands has been integrated in the estimation framework. The proposed methodology is evaluated using data obtained from a microscopic traffic simulator, INTEGRATION. Experimental results on a freeway corridor in northwest Indiana establish that significant improvement in Origin–Destination demand prediction can be achieved by explicitly accounting for route diversion behavior.  相似文献   

3.
Path flow estimator (PFE) is a one-stage network observer proposed to estimate path flows and hence origin–destination (O–D) flows from traffic counts in a transportation network. Although PFE does not require traffic counts to be collected on all network links when inferring unmeasured traffic conditions, it does require all available counts to be reasonably consistent. This requirement is difficult to fulfill in practice due to errors inherited in data collection and processing. The original PFE model handles this issue by relaxing the requirement of perfect replication of traffic counts through the specification of error bounds. This method enhances the flexibility of PFE by allowing the incorporation of local knowledge, regarding the traffic conditions and the nature of traffic data, into the estimation process. However, specifying appropriate error bounds for all observed links in real networks turns out to be a difficult and time-consuming task. In addition, improper specification of the error bounds could lead to a biased estimation of total travel demand in the network. This paper therefore proposes the norm approximation method capable of internally handling inconsistent traffic counts in PFE. Specifically, three norm approximation criteria are adopted to formulate three Lp-PFE models for estimating consistent path flows and O–D flows that simultaneously minimize the deviation between the estimated and observed link volumes. A partial linearization algorithm embedded with an iterative balancing scheme and a column generation procedure is developed to solve the three Lp-PFE models. In addition, the proposed Lp-PFE models are illustrated with numerical examples and the characteristics of solutions obtained by these models are discussed.  相似文献   

4.
    
The collection of origin–destination data for a city is an important but often costly task. This way, there is a need to develop more efficient and inexpensive methods of collecting information about citizens’ travel patterns. In this line, this paper presents a generic methodology that allows to infer the origin and destination zones for an observed trip between two public transport stops (i.e., bus stops or metro stations) using socio-economic, land use, and network information. The proposed zonal inference model follows a disaggregated Logit approach including size variables. The model enables the estimation of a zonal origin–destination matrix for a city, if trip information passively collected by a smart-card payment system is available (in form of a stop-to-stop matrix). The methodology is applied to the Santiago de Chile’s morning peak period, with the purpose of serving as input for a public transport planning computational tool. To estimate the model, information was gathered from different sources and processed into a unified framework; data included a survey conducted at public transport stops, land use information, and a stop-to-stop trip matrix. Additionally, a zonal system with 1176 zones was constructed for the city, including the definition of its access links and associated distances. Our results shows that, ceteris paribus, zones with high numbers of housing units have higher probabilities of being the origin of a morning peak trip. Likewise, health facilities, educational, residential, commercial, and offices centres have significant attraction powers during this period. In this sense, our model manages to capture the expected effects of land use on trip generation and attraction. This study has numerous policy implications, as the information obtained can be used to predict the impacts of changes in the public transport network (such as extending routes, relocating their stops, designing new routes or changing the fare structure). Further research is needed to improve the zonal inference formulation and origin–destination matrix estimation, mainly by including better cost measures, and dealing with survey and data limitations.  相似文献   

5.
    
This paper presents a procedure for the estimation of origin‐destination (O‐D) matrices for a multimodal public transit network. The system consists of a number of favored public transit modes that are obtained from a modal split process in a traditional four‐step transportation model. The demand of each favored mode is assigned to the multimodal network, which is comprised of a set of connected links of different public transit modes. An entropy maximization procedure is proposed to simultaneously estimate the O‐D demand matrices of all favored modes, which are consistent with target data sets such as the boarding counts and line segment flows that are observed directly in the network. A case study of the Hong Kong multimodal transit network is used to demonstrate the effectiveness of the proposed methodology.  相似文献   

6.
    
The origin–destination matrix is an important source of information describing transport demand in a region. Most commonly used methods for matrix estimation use link volumes collected on a subset of links in order to update an existing matrix. Traditional volume data collection methods have significant shortcomings because of the high costs involved and the fact that detectors only provide status information at specified locations in the network. Better matrix estimates can be obtained when information is available about the overall distribution of traffic through time and space. Other existing technologies are not used in matrix estimation methods because they collect volume data aggregated on groups of links, rather than on single links. That is the case of mobile systems. Mobile phones sometimes cannot provide location accuracy for estimating flows on single links but do so on groups of links; in contrast, data can be acquired over a wider coverage without additional costs. This paper presents a methodology adapted to the concept of volume aggregated on groups of links in order to use any available volume data source in traditional matrix estimation methodologies. To calculate volume data, we have used a model that has had promising results in transforming phone call data into traffic movement data. The proposed methodology using vehicle volumes obtained by such a model is applied over a large real network as a case study. The experimental results reveal the efficiency and consistency of the solution proposed, making the alternative attractive for practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
According to the intra-vehicle interaction, a traffic flow can generally be divided into three homogeneous states (1) that of free driving, (2) that of bunched driving, and (3) that of standing. The parameter describing the state of free driving is the desired speed, for the state of bunching it is the intra-vehicle gaps (time headway) within the convoy and the mean speed of the convoy, and for the state of standing it is the maximum jam density. These are the most essential parameters which do not depend on the actual traffic situation.This paper introduces a new model which considers the Fundamental Diagram (equilibrium speed–flow–density relationship) as a function of the homogeneous states. All traffic situations in reality can be considered as combinations of the homogeneous states and therefore can be described by the essential parameters mentioned above. The non-congested (fluid) traffic is a combination (superposition) of the states of free driving and bunched driving, the congested (jam, stop, and go) traffic is a combination of the states of bunched driving (go) and standing (stop). The contribution of the traffic states within the differently congested traffic situations can then be easily obtained from the queuing and probability theory. As a result, Fundamental Diagram in all equilibrium traffic situations is derived as simple functions of the essential parameters.According to the new model the capacity of freeways and rural highways can be determined by measuring the essential parameters. This is much easier than measuring the capacity directly.Furthermore, the probabilities of the various traffic states can be obtained from the new model. This leads to new possibilities in real-time controlling and telematics.The new model is verified by comprehensive measurements carried out on freeways and rural highways in Germany.  相似文献   

8.
    
Traffic congestion caused by either insufficient road capacity or unexpected events has been a major problem in urban transportation networks. To disseminate accurate traveler information and reduce congestion impact, it is desirable to develop an adaptive model to predict travel time. The proposed model is practically implementable to capture dynamic traffic patterns under various conditions, which integrates the features of exponential smoothing and the Kalman filter by utilizing both real‐time and historic data. The model is simple in formulation while robust in performance in terms of accuracy and stability. With a constraint or nonconstraint smoothing factor, the proposed model is tested with both real world and simulated data and demonstrated itself a sound model that outperforms others (e.g., Kalman filter and simple exponential smoothing) specifically under recurring and nonrecurring congestion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The simultaneous perturbation stochastic approximation (SPSA) algorithm has been used in the literature for the solution of the dynamic origin–destination (OD) estimation problem. Its main advantage is that it allows quite general formulations of the problem that can include a wide range of sensor measurements. While SPSA is relatively simple to implement, its performance depends on a set of parameters that need to be properly determined. As a result, especially in cases where the gradient of the objective function changes quickly, SPSA may not be as stable and even diverge. A modification of the SPSA algorithm, referred to as c-SPSA, is proposed which applies the simultaneous perturbation approximation of the gradient within a small number of carefully constructed “homogeneous” clusters one at a time, as opposed to all elements at once. The paper establishes the theoretical properties of the new algorithm with an upper bound for the bias of the gradient estimate and shows that it is lower than the corresponding SPSA bias. It also proposes a systematic approach, based on the k-means algorithm, to identify appropriate clusters. The performance of c-SPSA, with alternative implementation strategies, is evaluated in the context of estimating OD flows in an actual urban network. The results demonstrate the efficiency of the proposed c-SPSA algorithm in finding better OD estimates and achieve faster convergence and more robust performance compared to SPSA with fewer overall number of function evaluations.  相似文献   

10.
This paper addresses the problem of dynamic travel time (DTT) forecasting within highway traffic networks using speed measurements. Definitions, computational details and properties in the construction of DTT are provided. DTT is dynamically clustered using a K-means algorithm and then information on the level and the trend of the centroid of the clusters is used to devise a predictor computationally simple to be implemented. To take into account the lack of information in the cluster assignment for the new predicted values, a weighted average fusion based on a similarity measurement is proposed to combine the predictions of each model. The algorithm is deployed in a real time application and the performance is evaluated using real traffic data from the South Ring of the Grenoble city in France.  相似文献   

11.
    
In this study, we develop a real-time estimation approach for lane-based queue lengths. Our aim is to determine the numbers of queued vehicles in each lane, based on detector information at isolated signalized junctions. The challenges involved in this task are to identify whether there is a residual queue at the start time of each cycle and to determine the proportions of lane-to-lane traffic volumes in each lane. Discriminant models are developed based on time occupancy rates and impulse memories, as calculated by the detector and signal information from a set of upstream and downstream detectors. To determine the proportions of total traffic volume in each lane, the downstream arrivals for each cycle are estimated by using the Kalman filter, which is based on upstream arrivals and downstream discharges collected during the previous cycle. Both the computer simulations and the case study of real-world traffic show that the proposed method is robust and accurate for the estimation of lane-based queue lengths in real time under a wide range of traffic conditions. Calibrated discriminant models play a significant role in determining whether there are residual queued vehicles in each lane at the start time of each cycle. In addition, downstream arrivals estimated by the Kalman filter enhance the accuracy of the estimates by minimizing any error terms caused by lane-changing behavior.  相似文献   

12.
The paper proposes a “quasi-dynamic” framework for estimation of origin–destination (o–d) flow from traffic counts, under the assumption that o–d shares are constant across a reference period, whilst total flows leaving each origin vary for each sub-period within the reference period. The advantage of this approach over conventional within-day dynamic estimators is that of reducing drastically the number of unknowns given the same set of observed time-varying traffic counts. Obviously, the gain in accuracy depends on how realistic is the underlying assumption that total demand levels vary more rapidly over time than o–d shares. Firstly, the paper proposes a theoretical specification of the quasi-dynamic estimator. Subsequently, it proposes empirical and statistical tests to check the quasi-dynamic assumption and then compares the performances of the quasi-dynamic estimator of o–d flows with both classical off-line simultaneous dynamic estimators and on-line recursive Kalman filter-based estimators. Experiments are carried out on the real test site of A4–A23 motorways in North-Eastern Italy. Results confirm the acceptability of the assumption of quasi-dynamic o–d flows, even under the hypothesis of constant distribution shares for the whole day and show that the quasi-dynamic estimator outperforms significantly the simultaneous estimator. Data also suggest that using the quasi-dynamic estimates instead of the simultaneous estimates as historical o–d flows improves significantly the performances of the Kalman filter, which strongly depends of the quality of the seed o–d flows. In addition, it is shown that the aggregation of quasi-dynamic o–d estimates across subsequent time slices represents also the most effective way to obtain o–d estimates for larger time horizons (e.g. hourly estimates). Finally, a validation based on an hold-out sample of link flows (i.e. counts not used as inputs in the o–d estimation/updating process) revealed the quasi-dynamic estimator to be overall more robust and effective with respect to the other tested estimators.  相似文献   

13.
    
The accuracy of travel time information given to passengers plays a key role in the success of any Advanced Public Transportation Systems (APTS) application. In order to improve the accuracy of such applications, one should carefully develop a prediction method. A majority of the available prediction methods considered the variation in travel time either spatially or temporally. The present study developed a prediction method that considers both temporal and spatial variations in travel time. The conservation of vehicles equation in terms of flow and density was first re-written in terms of speed in the form of a partial differential equation using traffic stream models. Then, the developed speed based equation was discretized using the Godunov scheme and used in the prediction scheme that was based on the Kalman filter. From the results, it was found that the proposed method was able to perform better than historical average, regression, and ANN methods and the methods that considered either temporal or spatial variations alone. Finally, a formulation was developed to check the effect of side roads on prediction accuracy and it was found that the additional requirement in terms of location based data did not result in an appreciable change in the prediction accuracy. This clearly demonstrated that the proposed approach based on using vehicle tracking data is good enough for the considered application of bus travel time prediction.  相似文献   

14.
    
Outliers in traffic flow series represent uncommon events occurring in the roadway systems and outlier detection and investigation will help to unravel the mechanism of such events. However, studies on outlier detection and investigations are fairly limited in transportation field where a vast volume of traffic condition data has been collected from traffic monitoring devices installed in many roadway systems. Based on an online algorithm that has the ability of jointly predict the level and the conditional variance of the traffic flow series, a real time outlier detection method is proposed and implemented. Using real world data collected from four regions in both the United States and the United Kingdom, it was found that outliers can be detected using the proposed detection strategy. In addition, through a comparative experimental study, it was shown that the information contained in the outliers should be assimilated into the forecasting system to enhance its ability of adapting to the changing patterns of the traffic flow series. Moreover, the investigation into the effects of outliers on the forecasting system structure showed a significant connection between the outliers and the forecasting system parameters changes. General conclusions are provided concerning the analyses with future work recommended to investigate the underlying outlier generating mechanism and outlier treatment strategy in transportation applications.  相似文献   

15.
    
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.  相似文献   

16.
An Intervention Analysis Model (IAM) (Box and Tiao, 1975) was developed to study the impact of the ‘intervention' brought in by the Government of India (GoI), to control the CO pollution caused by the vehicular exhaust emissions, by the enforcement of the emission standards for the vehicles, on the mean level of the time-series of CO concentration. The study was conducted for an Air Quality Control Region (AQCR) comprising of an urban road intersection in Delhi, India, where almost 100% CO is contributed by vehicular traffic. Application of the model suggests that the ‘intervention' has not been effective in bringing down the desired change; some likely causes of which have also been mentioned.  相似文献   

17.
Due to their complementary characteristics, Global Positioning System (GPS) is integrated with standalone navigation devices like odometers and inertial measurement units (IMU). Recently, intensive research has focused on utilizing Micro-Electro-Mechanical-System (MEMS) grade inertial sensors in the integration because of their low-cost. In this study, a low cost reduced inertial sensor system (RISS) is considered. It consists of a MEMS-grade gyroscope and the vehicle built-in odometer. The system works together with GPS to provide 2D navigation for land vehicles. With adequate accuracy, Kalman filter (KF) is the commonly used estimation technique to achieve the data fusion of GPS and inertial sensors in case of high-end IMUs. However, due to the inherent error characteristics of MEMS grade devices, MEMS-based RISS suffers from the non-stationary stochastic sensor errors and nonlinear inertial errors, which cannot be handled by KF and its linear error models. To overcome the problem, Fast Orthogonal Search (FOS), a nonlinear system identification technique, is suggested for modeling the higher order RISS errors. As a general-purpose numerical method, FOS algorithm has the ability to figure out the system nonlinearity efficiently with a tolerance of arbitrary stochastic system noise. Even using online short-term training data, this method is still able to build an accurate nonlinear model that predicts the system dynamics. Motivated by the above merits, an augmented KF/FOS module is proposed by cascading FOS algorithm to a traditional KF structure. By estimating and reducing both linear and nonlinear RISS errors, the proposed method is supposed to offer substantial enhancement on the positioning accuracy of MEMS-based RISS during GPS outages. In order to examine the effectiveness of the proposed technique, the KF/FOS module is applied on the low cost RISS together with GPS in a land vehicle for several road test trajectories. The performance of the proposed method is compared to KF-only solution, both assessed with respect to a reference offered by a high-end solution. The experimental results confirm that KF/FOS module outperforms KF-only method. The results also show the applicability of the proposed method for real-time vehicle applications.  相似文献   

18.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

19.
    
The cumulative travel‐time responsive (CTR) algorithm determines optimal green split for the next time interval by identifying the maximum cumulative travel time (CTT) estimated under the connected vehicle environment. This paper enhanced the CTR algorithm and evaluated its performance to verify a feasibility of field implementation in a near future. Standard Kalman filter (SKF) and adaptive Kalman filter (AKF) were applied to estimate CTT for each phase in the CTR algorithm. In addition, traffic demand, market penetration rate (MPR), and data availability were considered to evaluate the CTR algorithm's performance. An intersection in the Northern Virginia connected vehicle test bed is selected for a case study and evaluated within vissim and hardware in the loop simulations. As expected, the CTR algorithm's performance depends on MPR because the information collected from connected vehicle is a key enabling factor of the CTR algorithm. However, this paper found that the MPR requirement of the CTR algorithm could be addressed (i) when the data are collected from both connected vehicle and the infrastructure sensors and (ii) when the AKF is adopted. The minimum required MPRs to outperform the actuated traffic signal control were empirically found for each prediction technique (i.e., 30% for the SKF and 20% for the AKF) and data availability. Even without the infrastructure sensors, the CTR algorithm could be implemented at an intersection with high traffic demand and 50–60% MPR. The findings of this study are expected to contribute to the field implementation of the CTR algorithm to improve the traffic network performance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
    
In this paper, we aim to quantify uncertainty in short-term traffic volume prediction by enhancing a hybrid machine learning model based on Particle Swarm Optimization (PSO) and Extreme Learning Machine (ELM) neural network. Different from the previous studies, the PSO-ELM models require no statistical inference nor distribution assumption of the model parameters, but rather focus on generating the prediction intervals (PIs) that can minimize a multi-objective function which considers two criteria, reliability and interval sharpness. The improved PSO-ELM models are developed for an hourly border crossing traffic dataset and compared to: (1) the original PSO-ELMs; (2) two state of the art models proposed by Zhang et al. (2014) and Guo et al. (2014) separately; and (3) the traditional ARMA and Kalman filter models. The results show that the improved PSO-ELM can always keep the mean PI length the lowest, and guarantee that the PI coverage probability is higher than the corresponding PI nominal confidence, regardless of the confidence level assumed. The study also probes the reasons that led to a few points being not covered by the PIs of PSO-ELMs. Finally, the study proposes a comprehensive optimization framework to make staffing plans for border crossing authority based on bounds of PIs and point predictions. The results show that for holidays, the staffing plans based on PI upper bounds generated much lower total system costs, and that those plans derived from PI upper bounds of the improved PSO-ELM models, are capable of producing the lowest average waiting times at the border. For a weekday or a typical Monday, the workforce plans based on point predictions from Zhang et al. (2014) and Guo et al. (2014) models generated the smallest system costs with low border crossing delays. Moreover, for both holiday and normal Monday scenarios, if the border crossing authority lacked the required staff to implement the plans based on PI upper bounds or point predictions, the staffing plans based on PI lower bounds from the improved PSO-ELMs performed the best, with an acceptable level of service and total system costs close to the point prediction plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号