首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究波形钢腹板箱梁的剪力滞效应,建立了考虑波形钢腹板剪切变形的箱梁纵向位移翘曲函数,考虑顶底板的纵向、面内剪切变形能和钢腹板的剪切变形能;基于能量变分原理,推导了适用于波形钢腹板箱梁剪力滞分析的解析解;综合对比模型试验、有限元分析及变分解析解的计算结果。研究表明:推导的波形钢腹板剪力滞解析解计算结果与模型试验、有限元分析结果吻合;集中荷载加载工况下,剪力滞影响区域仅在加载位置左右两侧附近很小范围;加载位置越靠近支座位置,剪力滞效应越明显;宽高比对剪力滞无影响,剪力滞系数与宽跨比呈线性相关;翼缘板宽度增加后箱梁的剪力滞系数增大。  相似文献   

2.
根据等效截面原理对箱梁空腹处截面进行等效处理,考虑其横截面轴力平衡关系,建立了腹板剪切变形下的翘曲位移函数,并推导出结构平衡状态下的剪力滞效应微分方程。结合模型试验、ABAQUS有限元模型以及相关文献值,对比分析了蝶形腹板箱梁(简支)在集中荷载及均布荷载作用下的纵向应力分布规律,并得到全梁段剪力滞系数三维分布模型。结果表明:竖向荷载作用下,蝶形腹板箱梁纵向应力呈正剪力滞效应状态分布,且箱梁支点截面和跨中截面的腹板接缝处剪力滞效应较大;集中、均布荷载作用下,研究结果与试验值、有限元值均较为吻合;与文献值相比,两者相对误差(绝对值)在2.00%~2.44%。  相似文献   

3.
为研究箱梁剪力滞效应和钢腹板剪切变形对波形钢腹板PC箱梁桥挠度的影响,基于能量变分法对该桥型的挠度计算进行了分析.首先,从箱梁翼板的面内剪切变形和弯曲剪力流的分布规律出发,在理论上推得可同时考虑箱梁剪力滞效应和钢腹板剪切变形的纵向位移函数;其次,以所得的纵向位移函数为基础,运用能量法推导出该桥型的挠度计算公式,并用模型试验及有限元法对公式的正确性进行了验证;最后,分析在箱梁宽跨比和钢腹板高度变化时,在不同荷载类型作用下,箱梁剪力滞效应和腹板剪切变形分别对波形钢腹板PC简支和连续箱梁桥挠度的影响.研究结果表明:当宽跨比为0.108~0.650时,在集中荷载作用下,剪力滞效应和钢腹板剪切变形对波形钢腹板PC连续箱梁桥的挠度影响较大,不可忽略;当宽跨比为0.108~0.650时,在均布荷载作用下,波形钢腹板PC简支和连续箱梁桥仅需考虑波形钢腹板剪切变形对其挠度的影响,只有在特定的宽跨比和特定的波形钢腹板截面高度下,才需要考虑剪力滞效应对其挠度的影响.   相似文献   

4.
为研究波形钢腹板部分斜拉桥在悬臂施工阶段主梁的剪力滞规律,以某单箱四室斜腹板波形钢腹板部分斜拉桥为实例,采用Midas/FEA有限元软件建立精细有限单元计算模型,研究悬臂施工阶段主梁的剪力滞效应分布规律。计算结果表明:在主梁最大悬臂状态,悬臂根部截面主梁顶板的应力分布最不均匀,剪力滞系数最大,其剪力滞系数离开悬臂根部后迅速减小,然后经历增大减小再增大的过程;梁段顶板在自重、斜拉索、预应力荷载共同作用下截面剪力滞效应受预应力荷载效应控制,均多呈现正剪力滞效应;主梁施工过程中,截面剪力滞效应规律不变;在桥梁施工过程分析时以主梁最大悬臂状态下的箱梁顶底板剪力滞系数为参考。  相似文献   

5.
文章基于能量变分原理,通过在纵向位移函数中引入翘曲变形函数以及剪切转角来分别考虑箱梁剪力滞效应和波形钢腹板剪切变形的影响,提出一种波形钢腹板箱梁挠度计算的解析方法;分别针对简支梁作用均布荷载和集中荷载两种工况,推导挠度计算公式,通过与有限元方法的比较验证该方法的准确性,并进行箱梁剪力滞效应和波形钢腹板剪切变形的挠度贡献分析。  相似文献   

6.
利用有限元分析软件ANSYS对列车和桥梁组成的系统进行模拟,建立变截面连续箱桥模型,研究了列车荷载作用下该梁桥的剪力滞效应.结果表明:在列车静荷载作用下,桥梁截面顶板和底板,均在与腹板交接处出现了截面最大应力,是正剪力滞效应,但在中跨根部底板出现了负剪力滞效应.在列车动荷载作用下,同一位置剪力滞系数的变化幅度较小;而且无论是顶板还是底板,总有剪力滞系数变化相反的位置出现,即一个区域的剪力滞系数升高,必会引起某一区域的剪力滞系数减小.  相似文献   

7.
波形钢腹板PC组合箱梁弯曲性能理论分析与试验研究   总被引:10,自引:0,他引:10  
对波形钢腹板PC组合箱梁模型梁的抗弯性能进行了理论分析与试验研究,分析了波形钢腹板的褶皱效应及波形钢腹板预应力混凝土组合箱梁的弯曲应力计算模式.讨论了在跨中截面单点对称荷载作用下,波形钢腹板和上、下混凝土翼缘板的纵向正应力分布规律、组合箱梁的变形及裂缝分布规律.试验结果表明,在荷载作用下波形钢腹板PC组合箱梁具有常用梁的特性.  相似文献   

8.
波形钢腹板组合箱梁自振特性与试验研究   总被引:3,自引:0,他引:3  
为了精确计算波形钢腹板组合箱梁的振动频率,根据能量变分原理,推导了振动频率公式,得到了考虑剪切变形及剪力滞效应的各阶自振频率的解析解。对一试验波形钢腹板组合箱梁进行了动力测试,得到了实际自振频率,并与简单梁理论、本文理论公式与三维有限元模型的计算频率进行对比。结果表明:剪力滞效应及剪切变形对波形钢腹板组合箱梁的振动频率影响较大,考虑剪力滞及剪切变形影响后的波形钢腹板组合箱梁的振动频率有所降低,且降低程度随着计算频率阶次的增加而迅速增加,因而在波形钢腹板组合箱梁振动频率的计算中须计其影响。  相似文献   

9.
根据势能变分原理,考虑薄壁箱梁翼缘的剪力滞效应和结构竖向挠度的几何非线性,导出了变高度薄壁箱梁的非线性控制微分方程,并采用样条最小二乘配点法进行求解.将计算值与试验结果进行了比较,两者吻合较好.研究表明,对于三跨变高度薄壁连续箱梁,在均布荷载作用下,内支座截面的应力分布不均匀程度较中跨跨中截面大;荷载越大,非线性效应越显著.  相似文献   

10.
为弥补动荷载作用下薄壁箱梁剪力滞效应研究的不足,依据薄壁箱梁自由振动齐次振动微分方程,结合基于最小势能原理的箱梁截面竖向位移控制微分方程及边界条件,提出薄壁箱梁无阻尼自由振动的弯矩解析解,从而建立了瞬时动荷载作用下考虑剪力滞效应的箱梁截面正应力解析表达式,并对比了宽跨比对薄壁箱梁的剪力滞效应的影响.数值算例结果表明,按本方法计算的翼缘板应力值与有限元计算结果吻合良好.  相似文献   

11.
针对隧道出渣时,装载机与倾卸车联合作业中的配合问题进行了深入的研究,分析并建立两种施工机械最佳配合关系的数学模型,通过实例计算表明,此模型及算法对施工单位在隧道施工中合理地确定两者数量关系具有一定的指导意义.  相似文献   

12.
中国经济增长的波动分析   总被引:1,自引:0,他引:1  
对国民经济增长的波动进行计算分析。应用Mexican Hat小波对国内生产总值(GDP)的增长率进行多时间尺度分析,再利用宏观经济学的理论从政府宏观调控政策、投资、消费等方面分析引起波动的原因。在不同时间尺度下,经济波动受到政策、投资和消费及重大政治事件的影响。通过对经济增长波动的因素及规律的分析,可以提高对经济发展的预见性,促进经济更好的增长。  相似文献   

13.
研究了纳米Ni粉对Cu粉末烧结性能的影响。研究表明:由于添加1%纳米Ni粉中的NiO未被完全还原,而且纳米Ni粉本身还有被CuO氧化成NiO的可能,因而纳米Ni粉在Cu粉末烧结过程中未能起到活化烧结的作用。相反,添加1%纳米Ni粉后还降低了Cu粉末烧结性能。  相似文献   

14.
级配对级配碎石力学性能影响试验分析   总被引:1,自引:0,他引:1  
潘泓 《北方交通》2008,(5):67-70
通过试验对不同级配的级配碎石强度影响因素进行分析,得出实际结论,为工程中级配选择提供借鉴.  相似文献   

15.
简要介绍桥梁板式橡胶支座抗压弹性模量的计算及试验方法,同时从几个方面分析影响该指标的因素.  相似文献   

16.
受流问题是制约电气化铁路提速的瓶颈之一,而弓网离线电弧是高速列车受流的关键问题.为了全面的把握弓网离线状态,设计了弓网离线模拟试验平台.实现正弦周期内不同时刻离线及回合过程的电弧放电现象,并采用示波器和数据采集卡实现对离合瞬间电压、电流和光强等波形的同步记录,为弓网离线检测法和列车受流质量的研究及抑制电弧危害打下基础.  相似文献   

17.
桥梁单片梁受力主要是由重交通车辆的碾压,尤其是超限重车的频繁通过引起的--这是外因,当然桥梁本身的质量差或桥面铺装层与脚缝的填充不符合要求也能产生单片梁受力--这是内因.如果严格按设计要求去做,这种情况是能避免发生的.单片梁受力严重的会危及行车安全,必须引以注意.  相似文献   

18.
主楼桩基按照桩端持力层起伏变化选用不同桩长的人工挖孔桩,进入强风化岩,有效发挥桩身强度,控制绝对沉降,解决了主楼与裙房不设沉降缝的问题.针对结构平面中间部位凹口较大,采取了在凹口处增设楼板,计算时薄弱部位设为弹性楼板的措施,计算结果满足规范要求.  相似文献   

19.
柔性路面超高路段病害成因分析   总被引:3,自引:0,他引:3  
柔性路面弯道内侧极易形成病害,分析了病害的成因,提出了相应的措施。  相似文献   

20.
赵中秋 《北方交通》2008,(5):164-166
随着经济的发展、综合国力增强,交通事业日新越益发展,桥梁建设取得了长足的进步,为我国的各项事业的发展提供了坚强的基础,但随之而来的桥梁病害问题也日益严重,针对上述情况,本文将对钢筋混凝土简支梁桥梁体的常见病害进行归纳和总结,并提出一定的维修措施,以便能够减轻同类病害的发生,为今后的公路事业发展提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号