首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an application of the wavelet technique to freeway incident detection because wavelet techniques have demonstrated superior performance in detecting changes in signals in electrical engineering. Unlike the existing wavelet incident detection algorithm, where the wavelet technique is utilized to denoise data before the data is input into an algorithm, this paper presents a different approach in the application of the wavelet technique to incident detection. In this approach, the features that are extracted from traffic measurements by using wavelet transformation are directly utilized in detecting changes in traffic flow. It is shown in the paper that the extracted features from traffic measurements in incident conditions are significantly different from those in normal conditions. This characteristic of the wavelet technique was used in developing the wavelet incident detection algorithm in this study. The algorithm was evaluated in comparison with the multi-layer feed-forward neural network, probabilistic neural network, radial basis function neural network, California and low-pass filtering algorithms. The test results indicate that the wavelet incident detection algorithm performs better than other algorithms, demonstrating its potential for practical application.  相似文献   

2.
This paper investigates the use of constructive probabilistic neural network (CPNN) in freeway incident detection, including model development and adaptation. The CPNN was structured based on mixture Gaussian model and trained by a dynamic decay adjustment algorithm. The model was first trained and evaluated on a simulated incident database in Singapore. The adaptation of CPNN on the I-880 freeway in California was then investigated in both on-line and off-line environments. This paper also compares the performance of the CPNN model with a basic probabilistic neural network (BPNN) model. The results show that CPNN has three main advantages over BPNN: (1) CPNN has clustering ability and therefore could achieve similarly good incident-detection performance with a much smaller network size; (2) each Gaussian component in CPNN has its own smoothing parameter that can be obtained by the dynamic decay adjustment algorithm with a few epochs of training; and (3) the CPNN adaptation methods have the ability to prune obsolete Gaussian components and therefore the size of the network is always within control. CPNN has shown to have better application potentials than BPNN in this research.  相似文献   

3.
Development of a universal freeway incident detection algorithm is a task that remains unfulfilled despite the promising approaches that have been recently explored. Incident detection researchers are realizing that an operationally successful detection framework needs to fulfill a full set of recognized needs. In this paper we attempt to define one possible set of universality requirements. Among the set of requirements, a freeway incident detection algorithm needs to be operationally accurate and transferable. Guided by the envisioned requirements, we introduce a new algorithm with potential for enhanced performance. The algorithm is a modified form of the Bayesian-based Probabilistic Neural Network (PNN) that utilizes the concept of statistical distance. The paper is divided into three main sections. The first section is a detailed definition of the attributes and capabilities that a potentially universal freeway incident detection framework should possess. The second section discusses the training and testing of the PNN. In the third section, we evaluate the PNN relative to the universality template previously defined. In addition to a large set of simulated incidents, we utilize a fairly large real incident databases from the I-880 freeway in California and the I-35W in Minnesota to comparatively evaluate the performance and transferability of different algorithms, including the PNN. Experimental results indicate that the new PNN-based algorithm is competitive with the Multi Layer Feed Forward (MLF) architecture, which was found in previous studies to yield superior incident detection performance, while being significantly faster to train. In addition, results also point to the possibility of utilizing the real-time learning capability of this new architecture to produce a transferable incident detection algorithm without the need for explicit off-line retraining in the new site. In this respect, and unlike existing algorithms, the PNN has been found to markedly improve in performance with time in service as it retrains itself on captured incident data, verified by the Traffic Management Center (TMC) operator. Moreover, the overall PNN-based framework promises potential enhancements towards the envisioned universality requirements.  相似文献   

4.
Timely and accurate incident detection is an essential part of any successful advanced traffic management system. The complex nature of arterial road traffic makes automated incident detection a real challenge. Stable performance and strong transferability remain major issues concerning the existing incident detection algorithms. A new arterial road incident detection algorithm TSC_ar is presented in this paper. In this algorithm, Bayesian networks are used to quantitatively model the causal dependencies between traffic events (e.g. incident) and traffic parameters. Using real time traffic data as evidence, the Bayesian networks update the incident probability at each detection interval through two-way inference. An incident alarm is issued when the estimated incident probability exceeds the predefined decision threshold. The Bayesian networks allow us to subjectively build existing traffic knowledge into their conditional probability tables, which makes the knowledge base for incident detection robust and dynamic. Meanwhile, we incorporate intersection traffic signals into traffic data processing. A total of 40 different types of arterial road incidents are simulated to test the performance of the algorithm. The high detection rate of 88% is obtained while the false alarm rate of the algorithm is maintained as low as 0.62%. Most importantly, it is found that both the detection rate and false alarm rate are not sensitive to the incident decision thresholds. This is the unique feature of the TSC_ar algorithm, which suggests that the Bayesian network approach is advanced in enabling effective arterial road incident detection.  相似文献   

5.
Computer simulation models are used in a variety of applications in transportation engineering and have become a prime aid in decision making. The applications range from evaluating traffic control strategies for single intersections to such complex decision processes as evaluating the impact of removing toll facilities at the George Washington Bridge in New York City. While it is widely accepted that simulation offers an unmatchable capability of evaluating alternate control policies, the high variance of the output variable presents a critical problem in such comparative analyses. The simulation models with high output variance must be run longer or replicated many times to achieve a desired precision level, and that corresponds to increased cost of computer resources. This paper describes and illustrates the application of variance reduction concepts that can improve the reliability and efficiency of the simulation experimental process by taking advantage of the simulation model structure. The two variance reduction concepts (common random numbers and antithetic variates) reduce the variance of the output variable by replacing the original sampling procedure with a new procedure that yields the same expected value but with a smaller variance. The application of the variance reduction concept was illustrated using results from experiments with a freeway simulation model. The results indicate that both common random numbers and antithetic variates sampling procedures appreciably reduce the variance of the simulation output measure.  相似文献   

6.
This paper addresses the transferability issue faced by many practitioners in developing an effective and efficient automatic incident detection algorithm for different freeways. An algorithm fusion procedure developed for the Central Expressway in Singapore is evaluated to demonstrate its transferability potential in detecting lane-blocking incidents along freeways in Melbourne, Australia. This study observes that the flow-based algorithm fusion options that use a set of different detection threshold values for various pre-incident traffic flow conditions possess promising transferability potential. They give a reasonably high detection rate of above 80% with false alarm rate levels below 0.2% with mean-time-to-detect values less than 150 seconds. These flow-based algorithm fusion options significantly outperform a model specifically developed for traffic conditions on freeways in Melbourne. In conclusion, this method is capable of providing an alternative to the commonly practiced methods in detecting incidents along different sites.  相似文献   

7.
This paper presents a new approach to time-of-day control. While time-of-day control strategies presented up-to-now are only optimal under steady-state conditions, the control algorithm derived in this paper takes into account the evolution of traffic flow according to the time delay between a volume change at a ramp and its subsequent disturbance at a freeway point downstream. The new control strategy is based on the solution of a linear programming optimization problem and makes freeway volume hold the capacity constraints for the total time of control operation. In order to reduce the computational effort a simplified version of the new algorithm is also discussed. Simulation results obtained by use of two different traffic flow models show that control derived through the new algorithm can avoid congestion and ensure operation with peak performance even if a steady-state condition is never attained.  相似文献   

8.
Traffic incidents are a principal cause of congestion on urban freeways, reducing capacity and creating risks for both involved motorists and incident response personnel. As incident durations increase, the risk of secondary incidents or crashes also becomes problematic. In response to these issues, many road agencies in metropolitan areas have initiated incident management programs aimed at detecting, responding to, and clearing incidents to restore freeways to full capacity as quickly and safely as possible. This study examined those factors that impact the time required by the Michigan Department of Transportation Freeway Courtesy Patrol to clear incidents that occurred on the southeastern Michigan freeway network. These models were developed using traffic flow data, roadway geometry information, and an extensive incident inventory database. A series of parametric hazard duration models were developed, each assuming a different underlying probability distribution for the hazard function. Although each modeling framework provided results that were similar in terms of the direction of factor effects, there was significant variability in terms of the estimated magnitude of these impacts. The generalized F distribution was shown to provide the best fit to the incident clearance time data, and the use of poorer fitting distributions was shown to result in severe over‐estimation or under‐estimation of factor effects. Those factors that were found to impact incident clearance times included the time of day and month when the incident occurred, the geometric and traffic characteristics of the freeway segment, and the characteristics of each incident. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
采用美国环保局(EPA)的MOBILE6.2模型,结合滨州市的实际情况,对滨州市的两个高速公路站,黄河大桥站和无棣站,通过车辆数目、车型进行统计分析,从而得到两个高速公路站点排放因子数据,其计算结果能为高速公路机动车污染控制提供依据,同时也提出了一种新的使用模型来计算高速公路路段排放因子的方法。  相似文献   

10.
This paper proposes conceptual frameworks incorporating technology acceptance model, theory of planned behavior and three additional constructs – impression changes, attitude of government, and risk to investigate the factors affecting freeway driver intention to adopt electronic toll collection service for both users and nonusers of electronic toll collection. The proposed frameworks are unique because of the incorporation of media and word-of-mouth effects to represent the impression changes, respectively. The respondents were specifically asked about their impressions of electronic toll collection related policies and strategies spread through media and word-of-mouth before and after electronic toll collection operation. Estimated results obtained from structural equations modeling validate that impression changes in both media and word-of-mouth exhibit significant direct or indirect effects on freeway driver intention to adopt electronic toll collection service. Corresponding strategies to enhance electronic toll collection adoption rate are then proposed accordingly.  相似文献   

11.
ABSTRACT

In order to improve traffic safety and protect pedestrians, an improved and efficient pedestrian detection method for auto driver assistance systems is proposed. Firstly, an improved Accumulate Binary Haar (ABH) feature extraction algorithm is proposed. In this novel feature, Haar features keep only the ordinal relationship named by binary Haar features. Then, the feature brings in the idea of a Local Binary Pattern (LBP), assembling several neighboring binary Haar features to improve discriminating power and reduce the effect of illumination. Next, a pedestrian classification method based on an improved deep belief network (DBN) classification algorithm is proposed. An improved method of input is constructed using a Restricted Bolzmann Machine (RBM) with T distribution function visible layer nodes, which can convert information on pedestrian features to a Bernoulli distribution, and the Bernoulli distribution can then be used for recognition. In addition, a middle layer of the RBM structure is created, which achieves data transfer between the hidden layer structure and keeps the key information. Finally, the cost-sensitive Support Vector Machine (SVM) classifier is used for the output of the classifier, which could address the class-imbalance problem. Extensive experiments show that the improved DBN pedestrian detection method is better than other shallow classic algorithms, and the proposed method is effective and sufficiently feasible for pedestrian detection in complex urban environments.  相似文献   

12.
Weaving sections, where a merge and a diverge are in close proximity, are considered as crucial bottlenecks in the highway network. Lane changes happen frequently in such sections, leading to a reduced capacity and the traffic phenomenon known as capacity drop. This paper studies how the emerging automated vehicle technology can improve the operations and increase the capacity of weaving sections. We propose an efficient yet effective multiclass hybrid model that considers two aspects of this technology in scenarios with various penetration rates: (i) the potential to control the desired lane change decisions of automated vehicles, which is represented in a macroscopic manner as the distribution of lane change positions, and (ii) the lower reaction time associated with automated vehicles that can reduce headways and the required gaps for lane changing maneuvers. The proposed model is successfully calibrated and validated with empirical observations from conventional vehicles at a weaving section near the city of Basel, Switzerland. It is able to replicate traffic dynamics in weaving sections including the capacity drop. This model is then applied in a simulation-based optimization framework that searches for the optimal distribution of the desired lane change positions to maximize the capacity of weaving sections. Simulation results show that by optimizing the distribution of the desired lane change positions, the capacity of the studied weaving section can increase up to 15%. The results also indicate that if the reaction time is considered as well, there is an additional combined effect that can further increase the capacity. Overall, the results show the great potential of the automated vehicle technology for increasing the capacity of weaving sections.  相似文献   

13.
This paper presents the development and assessment of models to estimate pedestrian demand based on the level of pedestrian activity (high and low). As activity varies by the time of the day, temporal variations were evaluated by considering different time periods. Data collected at 128 low and 48 high pedestrian activity signalized intersections (a total of 176 signalized intersections) in the City of Charlotte, North Carolina were used to develop and assess the models using stepwise regression analysis through backward elimination of independent variables (includes demographic, land use, and network characteristics). The use of different buffer widths (proximal area) to extract these characteristics was also evaluated. Results, in general, show that pedestrian demand varied by the level of activity, explanatory variables extracted by buffer width, and time of the day. The estimates from the models could be used in transportation planning (identify required pedestrian facilities, resource allocation), safety, and operational analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The many varied views on resilience indicate that it is an important concept which has significance in many disciplines, from ecology to psychology to risk/disaster management. Therefore, it is important to be able to quantifiably measure the resilience of systems, and thus be able to make decisions on how the resilience of the system can be improved. In this paper we will work with the definition, due to Pimm (1991), that resilience is “how fast a variable that has been displaced from equilibrium returns to it.” We will think of a system as being more or less resilient depending on the speed with which a system recovers from disruptive events or shocks. Here we consider systems which revert to an equilibrium state from shocks, and introduce a measure of resilience by providing a quantification of the rapidity of these systems’ recovery from shocks.We use a mean-reverting stochastic model to study the diffusive effects of shocks and we apply this model to the case of the London Underground. As a shock diffuses through the network, the human-flow in the network recovers from the shock. The speed with which the passenger counts return to normal is an indicator of how quickly the line is able to recover from the shock and thereafter resume normal operations.  相似文献   

15.
In this research, we present a data-splitting algorithm to optimally solve the aircraft sequencing problem (ASP) on a single runway under both segregated and mixed-mode of operation. This problem is formulated as a 0–1 mixed-integer program (MIP), taking into account several realistic constraints, including safety separation standards, wide time-windows, and constrained position shifting, with the objective of maximizing the total throughput. Varied scenarios of large scale realistic instances of this problem, which is NP-hard in general, are computationally difficult to solve with the direct use of commercial solver as well as existing state-of-the-art dynamic programming method. The design of the algorithm is based on a recently introduced data-splitting algorithm which uses the divide-and-conquer paradigm, wherein the given set of flights is divided into several disjoint subsets, each of which is optimized using 0–1 MIP while ensuring the optimality of the entire set. Computational results show that the difficult instances can be solved in real-time and the solution is efficient in comparison to the commercial solver and dynamic programming, using both sequential, as well as parallel, implementation of this pleasingly parallel algorithm.  相似文献   

16.
The primary focus of this research is to develop an approach to capture the effect of travel time information on travelers’ route switching behavior in real-time, based on on-line traffic surveillance data. It also presents a freeway Origin–Destination demand prediction algorithm using an adaptive Kalman Filtering technique, where the effect of travel time information on users’ route diversion behavior has been explicitly modeled using a dynamic, aggregate, route diversion model. The inherent dynamic nature of the traffic flow characteristics is captured using a Kalman Filter modeling framework. Changes in drivers’ perceptions, as well as other randomness in the route diversion behavior, have been modeled using an adaptive, aggregate, dynamic linear model where the model parameters are updated on-line using a Bayesian updating approach. The impact of route diversion on freeway Origin–Destination demands has been integrated in the estimation framework. The proposed methodology is evaluated using data obtained from a microscopic traffic simulator, INTEGRATION. Experimental results on a freeway corridor in northwest Indiana establish that significant improvement in Origin–Destination demand prediction can be achieved by explicitly accounting for route diversion behavior.  相似文献   

17.
This paper describes a simplified methodology designed for quick investment appraisal of improvements to a transport network, and discusses its limitations and advantages particularly in the context of a developing country. The approach basically considers:
  • - a method to define the total population (relevant origin-destination pairs) affected by the project
  • - the selection of a low-cost background model to represent transport demand on a network at an aggregate level
  • - the choice of a suitable marginal demand model (in this case a discrete mode choice model) capable of providing the required sensitivity and accuracy to model the project
  • - the estimation of the marginal demand due to the project during all the years of the study horizon, and
  • - a sensitivity analysis to assess the robustness of the decision recommended using these two models.
  • Finally, the paper summarises the results of applying the methodology to the case of an extension to the Santiago underground; it was found that the project has a high social rate of return (almost 20 per cent). However, from the point of view of a private evaluation, it can cover its operating costs only.  相似文献   

    18.
    A real time control policy minimizing total intersection delays subject to queue length constraints at an isolated signalized intersection is developed in this paper. The policy is derived from a new traffic model which describes the simultaneous evolution of queue lengths of two conflicting traffic streams, controlled by a traffic light, in both time and space. The model is based on the examination of shock waves generated upstream of the stop lines by the intermittent service of traffic at the signal. The proposed policy was tested against the existing pre-timed control policy at a high volume intersection and it was found superior, especially when demands increase well above the saturation level.  相似文献   

    19.
    Pedestrian crossing detection based on evidential fusion of video-sensors   总被引:1,自引:0,他引:1  
    This paper introduces an online pedestrian crossing detection system that uses pre-existing traffic-oriented video-sensors which, at regular intervals, provide coarse spatial measurements on areas along a crosswalk. Pedestrian crossing detection is based on the recognition of occupancy patterns induced by pedestrians when they move on the crosswalk. In order to improve the ability of non-dedicated sensors to detect pedestrians, we introduce an evidential-based data fusion process that exploits redundant information coming from one or two sensors: intra-sensor fusion uses spatiotemporal characteristics of the measurements and inter-sensor fusion uses redundancy between the two sensors. As part of the EU funded TRACKSS project on cooperative advanced sensors for road traffic applications, real data have been collected on an urban intersection equipped with two cameras. The results obtained show that the data fusion process enhances the quality of occupancy patterns obtained and leads to high detection rates of pedestrian crossings with multi-purpose sensors in operational conditions, especially when a secondary sensor is available.  相似文献   

    20.
    This paper presents a new concept of urban shared‐taxi services. The proposed system has a new organisational design and pricing scheme that aims to use the capacity in traditional taxi services in a more efficient way. In this system, a taxi acting in ‘sharing’ mode offers lower prices to its clients, in exchange for them to accept sharing the vehicle with other persons who have compatible trips (time and space). The paper proposes and tests an agent‐based simulation model in which a set of rules for space and time matching between a request of a client and the candidate shared taxis is identified. It considers that the client is only willing to accept a maximum deviation from his or her direct route and establishes an objective function for selecting the best candidate taxi. The function considers the minimum travel time combination of pickup and drop‐off of all the pool of clients sharing each taxi while allowing to establish a policy of bonuses to competing taxis with certain number of occupants. An experiment for the city of Lisbon is presented with the objectives of testing the proposed simulation conceptual model and showing the potential of sharing taxis for improving mobility management in urban areas. Results show that the proposed system may lead to significant fare and travel time savings to passengers, while not jeopardising that much the taxi revenues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号