首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
接头位置及刚度对预制箱形结构内力的影响   总被引:1,自引:0,他引:1  
利用弹性二维有限元分析模型,把广州地铁三号线明挖段初步设计阶段的整体双跨箱形结构划分为顶板、底板和边墙5块构件,计算了边墙与顶板的连接接头的设置位置及其抗弯刚度变化对预制双跨箱形结构内力的影响。结果表明:接头抗弯刚度的变化主要影响边墙最大正弯矩、顶板最大负弯矩和顶板最大正弯矩;而且接头的位置离顶板轴线距离越小,顶板最大正弯矩和边墙最大正弯矩越大,而顶板最大负弯矩越小;因为顶板最大正弯矩和边墙最大正弯矩均小于顶板最大负弯矩,所以接头设置在边墙适当的负弯矩处比较有利。  相似文献   

2.
引入抗弯弹簧铰模拟结构接头传递弹性弯矩的特性,建立了用于装配式公路钢桥竖向自由振动分析的带抗弯弹簧铰梁模型;利用有限元程序ANSYS对接头进行数值仿真,得到了抗弯弹簧铰刚度。算例表明,抗弯弹簧铰可反映拼装式结构接头传递弹性弯矩的特性,装配式公路钢桥自振频率理论解与试验吻合很好。  相似文献   

3.
为研究盾构斜井管片衬砌与可压缩层联合支护体系中可压缩层参数对管片衬砌力学性能的影响,以神华新街台格庙矿区主斜井工程为依托,建立考虑管片衬砌与可压缩层之间接触效应和管片整环刚度折减效应的数值计算模型,分析有无可压缩层、不同可压缩层刚度及厚度等因素下管片衬砌内力和变形的分布规律和变化情况;采用相似模型试验对上述问题进行了进一步研究,并对有无可压缩层时管片的极限承载力和破坏形式进行了探讨.研究结果表明:可压缩层刚度越大,管片所受围岩压力越大且分布越不均匀,同时使得管片弯矩减小,轴力增大,当可压缩层模量与围岩模量之比在0.1~0.5之间变化时更为明显;随着可压缩层厚度的增大,管片所受围岩压力依次按不均匀、均匀、不均匀的趋势变化,当可压缩层厚度与管片厚度之比为1.7时围岩压力最小,管片轴力则随可压缩层厚度的增大而减小;可压缩层存在与否对管片变形影响甚微,通过自身的挤密吸收围岩压力且促使应力重分布,从而减小并均匀化传递至管片上的荷载,使得管片内力随外荷载的增长更平缓,量值更小且分布更均匀,并使管片的极限承载力提高了40%;有无可压缩层时管片破坏均经历椭变、椭变加剧、裂缝出现和扩展、失稳破坏的过程,且有可压缩层时管片的破坏更严重.   相似文献   

4.
采用弯矩曲率分析方法,研究了纵筋率、轴压比和混凝土强度对截面有效抗弯刚度的影响,并分析了截面有效抗弯刚度对纵筋率、轴压比和混凝土强度的敏感性。研究结果表明:截面有效抗弯刚度随纵筋率、轴压比和混凝土强度的增加而增大,截面有效抗弯刚度对纵筋率最为敏感,对混凝土强度的敏感性次之,对轴压比的敏感性最小。  相似文献   

5.
荷载-结构模式的壳-弹簧-接触模型   总被引:4,自引:1,他引:4  
为探讨盾构隧道管片结构的空间力学行为,采用厚壳、弹簧、空间实体和接触单元分析盾构隧道管片衬砌的内力状态,提出了荷载-结构模式的壳-弹簧-接触模型.该模型考虑了管片间接缝处的挤压作用、管片与螺栓接头之间的咬合作用、地层对管片的径向与切向抗力作用、环向接头的正负抗弯刚度差异以及封顶块的插入角等因素.算例表明,壳-弹簧-接触模型与梁-弹簧模型的计算结果相差较小;轴力和剪力在壳体上的分布具有明显的空间性.  相似文献   

6.
利用有限元计算软件ABAQUS建立了环向复合管片与环向斜螺栓接头的三维实体模型; 考虑复合管片材料的非线性, 采用弹塑性本构模型, 分析了环向斜螺栓接头在常温下的力学特性; 根据HC升温曲线, 分析了接头模型的传热特性, 研究了复合管片衬砌和环向斜螺栓接头在火灾下的温度分布规律。分析结果表明: 采用高强螺栓能够有效减小接头张开量, 增大接头刚度; 在采用高强螺栓的情况下, 斜螺栓最大轴应力易在初始阶段达到屈服, 屈服后接头弯矩和轴力的增大对斜螺栓的应力影响并不大, 但对斜螺栓变形影响较大, 当接头负弯矩从7 kN·m增加到122 kN·m, 接头轴力从368kN增加到734 kN时, 斜螺栓最大应变增加1.6倍, 当接头正弯矩从53 kN·m增加到182 kN·m, 接头轴力从903kN增加到1 056 kN时, 斜螺栓最大应变增加5.9倍; 常温下接缝附近斜螺栓的轴应力呈现反对称分布, 除接缝外其他部位斜螺栓的轴应力基本相等, 约为400MPa, 接缝处轴应力绝对值最大值可达700 MPa; 火灾情况下手孔处温度上升最快且达到的温度最高, 80 min时即可达到1 000 ℃, 接缝处混凝土在100min后达到稳定温度, 螺母处混凝土在150 min后达到稳定温度, 稳定温度均为1 000 ℃左右。   相似文献   

7.
江苏省连云港盐灌船闸下游软土堤岸航道支护工程采用预应力桩锚支护+ 支护体后侧粉喷桩局部加固的支护体系。采用数值分析法分析不同影响因素对支护体后侧粉喷桩局部加固后堤岸预应力桩锚支护体系变形受力特性的影响。基于现场试验数据,对有限元数值分析模型进行验证,探讨桩径、锚固深度、锚固力及桩体抗弯刚度等因素对桩身变形和弯矩分布规律的影响。结果表明:桩体嵌固深度的增加有效地控制了桩锚支护结构的水平位移和弯矩,随着锚索锚固力的增加,桩锚支护结构的水平位移减小,但弯矩增大;桩径和桩体抗弯刚度变化对支护结构的水平位移和弯矩的影响效果不明显。  相似文献   

8.
为了研究高速列车脱轨撞击盾构隧道时接头螺栓参数对螺栓失效和管片的影响. 基于ABAQUS有限元软件,建立了盾构隧道管片衬砌分块拼装式模型,利用时速200 km/h列车12.5° 斜向撞击荷载曲线,通过设置接触面单元和具有抗拉、抗剪、抗弯3种刚度组合的连接单元,近似模拟了盾构隧道接缝混凝土接触效应和螺栓连接效应,开展了不同螺栓直径和不同螺栓强度级别下管片接头螺栓的失效研究. 研究结果表明:在列车撞击荷载作用下,接头螺栓主要发生拉伸失效和剪切失效两种失效状态,失效后螺栓拉力和剪力降低为0,并且螺栓失效一般是相对列车行进方向相继出现的;拉伸失效通常出现在被撞块后端纵向螺栓,而被撞块环向螺栓和前端纵向螺栓一般发生剪切失效;各螺栓发生失效的时间随着接头螺栓强度级别的提高或螺栓直径的增大有所延后;不同螺栓参数下被撞块管片位移极大值均在6 cm左右,提高接头螺栓的强度级别和增大螺栓直径,将减小被撞块管片最终位移较大值区域面积以及最终位移极大值的数值,但管片最终位移极大值数值的减幅在10%以内,说明改变螺栓参数无法明显减小管片最终位移.   相似文献   

9.
基于带式浮桥接头的半刚性,提出了反映接头传递弯矩的抗弯弹簧铰模型,建立了带式浮桥静力计算的弹性基础上抗弯弹簧铰梁模型。引入传递矩阵法,给出了弹性基础上抗弯弹簧铰梁的场传递矩阵和点矩阵,通过算例验证了计算模型的合理性。分析表明,带式浮桥需考虑接头的半刚性,当抗弯弹簧铰刚度大于5.0×10^8N·m/rad时,可按刚接计算;当抗弯弹簧铰刚度小于5.0×10^4N·m/rad时,可按铰接计算。  相似文献   

10.
盾构管片拼装过程需要设置环向与纵向螺栓,螺栓接头会对管片整体刚度产生影响。以城市地铁单线单洞盾构隧道为研究对象,采用室内相似模型试验,开展2环管片横向、21环管片纵向加载试验,通过对比分析均质管片与错缝拼装管片,得到了盾构隧道横向和纵向刚度有效率。试验结果表明:隧道各位置的变形与荷载基本呈线性变化;横向抗弯刚度有效率为0.76,纵向抗弯刚度有效率为0.20~0.35。  相似文献   

11.
针对连续组合梁桥负弯矩区桥面板易开裂的难题,提出了新型钢-混组合梁桥负弯矩区UHPC (Ultra-High Performance Concrete)接缝方案。通过建立Midas有限元模型分析了应用UHPC接缝的连续组合梁桥负弯矩区的抗弯性能,自编Matlab程序分析连续组合梁桥的裂后截面刚度折减与内力重分布,并从抗裂性能角度进行参数分析。结果表明,组合梁桥负弯矩区UHPC接缝具有良好的技术先进性和经济性。  相似文献   

12.
地震作用下盾构隧道纵向接头的受力特征   总被引:1,自引:1,他引:0       下载免费PDF全文
实际工程中,盾构隧道纵向接头是结构受力和变形的薄弱部位,针对盾构隧道纵向接头细部构造在地震作用下的受力特征,提出了一套由整体到局部的数值分析流程.首先建立基于纵向等效刚度梁的三维地层-结构时程分析模型,然后以该模型计算得到的纵向内力极值作为盾构隧道整环三维分析模型的外荷载,获取隧道最不利区域边界力,最后将边界力施加在盾构隧道纵向接头局部精细化分析模型之上,分析纵向接头细部构造受力特征;并以某综合管廊工程为背景对该方法进行具体阐述和讨论. 研究结果表明:地震波横向激励时,盾构隧道纵向以往复的水平弯曲为主,而纵向激励时,则以往复的竖向弯曲和纵向拉压为主;在纵向张开量最大的局部区域,不论是轴向拉力工况还是纵向水平弯矩工况,该局部区域都处于受拉状态,两种工况对该局部区域受力模式不产生本质影响;当盾构隧道纵向最大张开量的局部区域受拉时,最大拉应力区均位于管片内侧手孔部位,最大压应力区则围绕螺栓孔成环形分布.   相似文献   

13.
半整体式桥台无伸缩缝桥静力分析   总被引:5,自引:0,他引:5  
为了克服桥梁伸缩缝病害,考虑了桥梁上部结构、下部结构和基地土的共同作用,建立了半整体式桥台无伸缩缝桥的静力计算模型。以一座长100 m PC连续箱梁桥为例,对该桥在重力、车辆和季节性温度变化荷载作用下进行了弹性大变形分析,对相应的有伸缩缝桥和整体式桥台无伸缩缝桥分析结果进行了对比。结果表明:半整体式桥台无伸缩缝桥主梁的弯矩、剪力、挠度和下部结构的轴力与有伸缩缝桥接近,但主梁中出现了轴力,下部结构弯矩和剪力较有伸缩缝桥大,说明半整体式桥台无伸缩缝桥消除了伸缩缝的病害,结构整体刚度大,是一种有应用推广价值的桥型。  相似文献   

14.
为更好地对古建筑木结构进行抗震加固,基于直榫节点力学模型,以汶川地震中受损的青城山黄帝殿为例,对直榫节点分别采用扁钢和阻尼器加固,对比分析了加固前后结构的自振周期、节点加速度放大系数以及被加固节点相邻杆件的内力.结果表明:2种加固方法均能提高结构的抗震性能,但扁钢加固加大了节点刚度和部分相邻构件的内力,易导致相邻节点拔榫破坏;阻尼器加固可在不增大节点刚度的条件下,减轻结构的地震响应,加固节点的加速度放大系数降低12.8%,加固节点相连杆件的拉力、剪力和弯矩分别平均降低48.3%、40.6%和52.1%,起到了耗能和防止拔榫的作用.   相似文献   

15.
为了得到适用于类矩形盾构隧道结构设计模型,通过整环足尺试验模拟类矩形盾构隧道在正常运营工况下的实际受力,得到试验结构的变形和内力,采用等效刚度模型和梁-弹簧模型对试验结果进行分析,得到有效的类矩形盾构隧道结构设计参数. 结果表明:采用等效刚度模型作为类矩形盾构隧道结构计算模型,难以得到同时符合结构长短轴变形的管片刚度折减系数;采用梁-弹簧模型作为类矩形盾构隧道结构计算模型,结构变形和结构内力计算结果和足尺试验结果较为匹配,能真实反应类矩形盾构隧道结构受力,选用梁-弹簧模型作为类矩形盾构隧道结构计算模型更为合理,所研究类矩形结构管片接缝的抗剪刚度建议为341 × 106~368 × 106 N/m;负弯矩接缝抗弯刚度建议为114 × 106~491 × 106 N?m/rad,正弯矩接缝抗弯刚度范围为85 × 106~177 × 106 N?m/rad.   相似文献   

16.
对于大跨度悬索桥,加劲梁的抗弯刚度远远小于具备强大拉力储备的主缆的重力刚度,加劲梁的抗弯刚度的大小对全桥结构行为的影响只是处于次要地位。忽略加劲梁的抗弯刚度而将悬索桥当成一个单纯的索结构来分析它的内力和变形的方法就是重力刚度法。通过与悬索同跨简支梁的剪力和弯矩来明确重力刚度的概念,并揭示该剪力和主缆水平拉力、该弯矩和主缆挠度之间的关系。分别采用重力刚度法和通用软件ANSYS来计算悬索桥的内力和变形,其结果接近,说明采用重力刚度法计算的结果也是具有参考价值的。  相似文献   

17.
This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis of tubular X-joints is performed using Ansys program. The influences of those factors, including ratio of brace diameter to chord diameter (β), ratio of chord diameter to twice chord thickness (γ), ratio of brace wall thickness to that of chord (τ), brace-to-chord intersection angle (θ), and chord stress ratio, ratio of another brace diameter to chord diameter, in-plane and out-of-plane moment of braces, etc., on stiffness of tubular X-joints are analyzed.Two non-dimensional parameters-joint axial stiffness factor ηN and axial force capacity factor ωN are proposed,and the relationship curve of the two factors is determined. Computational formulas of tubular X-joint axial stiffness are obtained by multi-element regression technology. The formulas can be used in design and analysis of steel tubular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号