首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
无砟轨道是我国高速铁路普遍采用的轨道结构形式,由于无砟轨道质量状态好、不平顺幅值小,应用现行轨道质量指数(TQI)进行轨道平顺状态评价时,难以反映不同线路区间之间的差异,进而不利于无砟轨道的精细化管理。为此,文章提出了基于放大系数和不同权重组合的TQI计算方法。以某高速铁路无砟轨道不平顺检测数据为例,利用变异系数分配各单项分量在TQI中的权重,并通过放大系数将单项分量值根据管理标准进行分级处理;通过新TQI值与原TQI值的对比分析,将新TQI值计算结果分为4个区间:TQI≤600,600TQI≤700,700TQI≤800,TQI800。与现行TQI相比,文章提出的计算方法能够更为有效地识别出现严重轨道不平顺病害的处所,以期对高速铁路无砟轨道线路的平顺性进行更好地评估和管理。  相似文献   

2.
以合武客运专线动检车实测轨道不平顺数据为统计样本,采用轨道不平顺变化率和线性插值方法以及经验模态分解法对轨道不平顺异常值和趋势项进行处理,并运用经典周期图法对统计样本进行空间谱估计,同时采用最小二乘法对轨道不平顺功率谱进行拟合。研究结果表明,不平顺功率谱谱线普遍低于美国6级谱,在长波波段能量较低,但存在周期性成分,同时温度力对无缝线路影响显著。缓和曲线与圆曲线的分析结果都表明内轨平顺状况优于外轨。  相似文献   

3.
为了高效选取轨道不平顺随机样本, 以满足车辆-轨道系统随机动力与可靠度分析中的激振源遍历性要求, 依据轨道随机不平顺的弱平稳与谱相似特征, 提出了一种轨道不平顺概率模型; 采用离散概率积分和统计方法, 在时域中将大量轨道不平顺检测信号分成若干个时程序列, 对每个序列采用谱分析法计算其统计功率谱密度分布; 采用矩阵法对轨道不平顺功率谱密度函数进行集合表征, 视每条谱线在不同频率点的功率谱密度概率具有累加性, 采用单一频率下的功率谱密度概率分布推知整条谱线的出现概率; 采用通用随机模拟方法选取代表性轨道谱, 并反演随机不平顺序列; 实测了某高速铁路约269km的轨道高低和方向不平顺, 基于车辆-轨道耦合动力学理论, 从轨道不平顺模拟幅值与车辆-轨道系统动力响应的概率密度分布出发, 对比了轨道不平顺概率模型与轨道不平顺随机模型的计算结果, 以验证轨道不平顺概率模型的正确性和高效性。计算结果表明: 以2种模型生成的轨道随机不平顺为激振源, 获得的车辆-轨道系统动力响应分布熵差异小于2%, 2种模型均能准确表达不平顺激扰特性; 为保证模拟与实测不平顺的概率密度分布一致, 采用随机模型和概率模型分别需要生成131和33个随机样本, 概率模型具有更高的分析效率; 在给定计算工况下, 轮轨力和车体加速度的幅值分别为38~152kN和-0.042g~0.043g (g为重力加速度), 均未超过《高速铁路设计规范》 (TB 10621—2014) 中的限值(轮轨力为170kN, 车体加速度为0.25g), 表明此高速铁路轨道不平顺状态较优, 行车安全性和舒适性可以得到保证。  相似文献   

4.
城市轨道交通轨道不平顺谱分析   总被引:5,自引:1,他引:4  
以上海域市轨道交通的轨道不平顺检测数据为样本,对城市轨道交通轨道不平顺的特征进行分析.首先,利用轨道不平顺变化率法和经验模态分解法对检测数据进行预处理,有效消除轨距和轨向不平顺检测数据的异常值和非线性趋势线,其次,对检测数据进行功率谱密度分析,并与美国6级轨道谱、德国铁路高低干扰谱和中国提速干线7参数谱进行比较,结果表...  相似文献   

5.
北京地铁5号线天通苑站至天通苑北站之间铺设了一段长为171 m的梯形轨枕轨道试验段.为了得出符合城市轨道交通实际情况的轨道不平顺谱,对梯形轨枕轨道试验段进行了轨道不平顺测量,并对轨道不平顺功率谱进行了拟合,得出了拟合曲线的特征参数.通过对测量结果进行幅值分析和功率谱分析可知,北京地铁5号线梯形轨枕轨道试验段的轨道平顺状态较好.  相似文献   

6.
线路不同区段轨道质量参差不齐,但其幅频差异能很好地在各区段轨道不平顺功率谱密度(PSD)曲线上得到表征。基于此,结合沪宁客运专线轨检数据,从识别和评价两个方面对轨道平顺状态进行了研究。基于不同区段轨道谱存在幅频特性差异,提出以200m为一研究单元,通过分频段离散各单元轨道谱幅频信息,以三维图的形式进行不平顺的时频域识别分析。借鉴轨道谱分级管理的方法,同时综合波段整体不平顺和波段内各波长幅值波动程度两项指标,研究并给出了评价各里程单元平顺性的方法,将综合评价后各区段所属不平顺状态等级划分为优秀、良好、合格、失格。  相似文献   

7.
采用傅立叶逆变换将轨道不平顺功率谱密度转换为时域不平顺序列, 分析了美国轨道中心线各种不平顺的相关性。利用轨道中心线不平顺与左右轨道不平顺的关系, 将中心线轨道不平顺等效转换为左右轨道的垂向和横向不平顺, 通过车辆动力学仿真计算了轮轨作用力响应, 并比较了美国五级谱单侧不平顺与中国干线谱不平顺。比较结果表明: 各种中心线不平顺之间相关系数均小于0.3, 为微弱相关, 可视为统计独立的; 中心线轨道不平顺响应与等效后的左右轨道不平顺响应的相关系数均大于0.8, 为高度相关, 验证了等效转换的正确性; 美国五级谱单侧不平顺功率谱密度在低频部分高于中国干线谱, 在高频部分则低于中国干线谱。  相似文献   

8.
左右轨道不平顺功率谱转换中心线功率谱的方法   总被引:2,自引:4,他引:2  
利用关于左、右轨的轨道不平顺与关于轨道中心线的轨道不平顺之关系,借助周期图法谱估计和非线性最小二乘法的曲线拟合,把左、右轨的轨道不平顺功率谱密度等效转换成关于轨道中心线的功率谱密度。最后结合实例,给出了等效转换后的功率谱密度函数表达式的参数。  相似文献   

9.
轨道交通无砟轨道不平顺谱的拟合与特性分析   总被引:1,自引:0,他引:1  
以上海轨道交通实测的无砟轨道不平顺数据作为样本,利用经典周期图法计算其轨道不平顺谱,进而得到原始轨道平均谱。基于轨道不平顺七参数拟合谱模型,利用非线性最小二乘法对原始轨道平均谱进行拟合,得出轨道谱的拟合参数。最后,将计算所得的无砟轨道谱拟合曲线与美国6级谱、德国高低干扰谱和中国七参数谱对比分析,结果表明:在中长波范围内,轨距、水平和高低不平顺状态较为优良,低于美国6级谱、德国高低干扰谱和中国干线轨道谱,而轨向不平顺谱则与美国6级谱水平相当;在短波范围内则无砟轨道谱谱值较大。  相似文献   

10.
线路不平顺波长对提速列车横向舒适性影响   总被引:8,自引:5,他引:3  
为提高列车在提速区段的乘坐舒适性, 借助于现场试验测试数据, 运用车辆-轨道耦合动力学理论, 通过轨道随机不平顺功率谱变换得到不同波长的不平顺, 研究了线路不平顺波长对列车运行平稳性及乘坐舒适性的影响及规律。分析结果表明: 提速机车以150km.h-1速度在直线轨道上运行时, 如果线路不平顺波长为1~20m, 则车体振动主频主要集中在2.20~4.00Hz, 避开了人体正常敏感频率, 平稳性指标属优级; 如果线路不平顺波长为20~30m, 则车体振动主频降低至1.50Hz左右, 正好处于人体敏感频率范围, 乘坐舒适性大大降低, 平稳性指标值增加了20%多; 更长的波长(大于30m)对机车运行平稳性影响较小, 指标与1~20m波长的相应值处于相同等级。可见, 对于既有提速线路, 必须严格控制不平顺的20~30m波长, 虽然该波段的不平顺幅值很小, 但对列车在提速区段车体横向振动影响甚大。  相似文献   

11.
轨道是列车运行的基础,轨道不平顺状态是影响行车安全的关键因素.为保障列车安全、平稳和不间断的运行,轨道必须具有高平顺性.根据轨道不平顺变化特点,文中利用ARIMA(自回整合归移动平均)模型对轨道不平顺状态进行预测,并且采集了京九线下行463.8 km处2008年2月第二次检测至2008年12月第一次检测的TQI历史检测数据对模型的有效性进行了检验,结果表明ARIMA模型能够对两次大修作业之间的轨道的不平顺状态进行较为准确地预测.  相似文献   

12.
基于小波的列车加速度和轨道不平顺关系分析   总被引:3,自引:0,他引:3  
轨道不平顺是引起车辆系统振动的重要激振源.为适应现代铁路的发展,提高旅客乘车的舒适性,研究轨道高低不平顺与列车垂向加速度间的关系变得越来越重要.本文利用小波分析的方法,对综合检测车采集到的轨道高低不平顺信号和垂向加速度信号进行处理,将分析的重点集中在具体的某一频段上,并对其进行了相关性分析,确定了轨道高低不平顺和列车垂向加速度间的关系.  相似文献   

13.
基于经验模态分解的轨道不平顺时频特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
高速铁路轨道不平顺测量值是由许多不同频率、不同幅值的单分量信号叠加而成的复杂随机过程.为分析轨道不平顺在空间域和频率域的分布特性,利用希尔伯特-黄变换方法提取轨道不平顺在时-频域的能量分布,为从幅值和波长两个方面综合评价轨道几何状态提供一种新的分析方法.首先,利用多元经验模态分解基于数据驱动的滤波特性,将轨道不平顺数据同时分解为不同尺度下的幅值-频率调制的多元本征模态函数;然后,通过希尔伯特变换计算各尺度下本征模态函数的瞬时频率,分析各层本征模态函数的频率和能量分布特征.通过对轨道检查车的实测轨道不平顺数据解算与分析表明:轨道不平顺的频率分布呈现出近似二进滤波特性,并且每个尺度下的频率带宽较窄;多元经验模态分解尺度图能确定轨道不平顺在各尺度下的能量分布及对应的波长特征;样本轨道不平顺数据中,轨距和水平不平顺的能量主要分布在中长波波段,轨向和高低的能量主要集中在空间波长4~36 m范围;扭曲的能量分布在波长为4.9 m和7.6 m的两个尺度内.   相似文献   

14.
基于小波变换的轨道不平顺信号分析   总被引:3,自引:1,他引:3  
为消除轨检车速度不稳定对采集的轨道不平顺信号频谱分析的影响,利用Haar小波变换建立了原始信号瞬时频率与Haar小波系数的关系,以计算瞬时频率.根据求取的瞬时频率对采样信号进行内插和重采样,再对重采样信号进行傅立叶变换,即可得到消除了畸变的频谱.  相似文献   

15.
轨道几何形状检测数据是一个随时间变化具有随机特征的时间序列,反映轨道几何状态的变化.在本文中,灰色关联度理论用于研究轨道水平不平顺时间序列数据,挖掘时间序列数据之间隐含的关系;经过普遍适应性改进和残差修正改进的灰色GM(1,1)模型预测固定测点轨道不平顺长期状态变化趋势,随机线性AR和卡尔曼滤波模型分析单元区段轨道不平顺短期变化趋势,探索轨道状态变化随机数据序列中隐藏的规律并进行预测.短期和长期预测模型验证结果表明,三种模型是有效的,能够达到预期的精度.  相似文献   

16.
基于高铁轨道不平顺的车轮不圆顺识别模型   总被引:1,自引:1,他引:0       下载免费PDF全文
为获取高速运行车辆的车轮不圆顺幅值,并进一步研究轨道谱,建立一种基于轨道不平顺的车轮不圆顺幅值快速测量模型. 首先分析了车轮不圆顺在轨道不平顺检测数据中的分布规律,提出车轮不圆顺的密集采样方法,进而建立基于稀疏轨道不平顺数据的车轮不圆顺动态识别模型. 通过数值仿真研究发现:车轮不圆顺对基于惯性基准法测得的离散轨道不平顺数据的幅值影响较小,对频域(轨道谱)影响较大;车轮不圆顺会干扰波长小于和等于轮长的轨道不平顺检测数据,且对前者影响更大;车轮不圆顺对波长大于轮长的轨道不平顺数据也有影响,最大影响波长仅与车轮周长和轨道不平顺的采样间距有关;识别模型能有效地从轨道不平顺检测数据中提取车轮不圆顺,误差可控制在0.02 mm以内.   相似文献   

17.
为消除轨检车速度不稳定对采集的轨道不平顺信号频谱分析的影响,利用Haar小波变换建立了原始信 号瞬时频率与Haar小波系数的关系,以计算瞬时频率.根据求取的瞬时频率对采样信号进行内插和重采样,再 对重采样信号进行傅立叶变换,即可得到消除了畸变的频谱.   相似文献   

18.
小波变换在轨道静态功率谱密度获取中的应用   总被引:2,自引:0,他引:2  
利用小波变换将轨道不平顺信号和所得谱图信号分解到互不重叠的频带上,结合小波阈值处理技术,对小波高频系数进行阈值量化处理,滤掉其中某些频段内的干扰与噪声信号,然后对信号进行重构,从而实现了对信号的去噪和对谱图信号的平滑处理。结果表明,该方法成功地获取了轨道静态功率谱密度,有效提高了轨道静态参数信噪比和轨道静态功率谱密度图的可视性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号